1887

Abstract

Twenty-four strains were isolated from desert soils in the Xinjiang region of China and were characterized by a polyphasic approach. These strains grouped into three clusters in IGS-RFLP, SDS-PAGE analysis of whole-cell proteins and BOX-PCR analysis, corresponding to genomic species V, VI and VII as found in a previous study. The results were supported by sequencing analyses of , IGS, and genes. Genospecies VII was most related to , while genospecies V and VI were both most closely related to , but were distinct from each other and from . The DNA–DNA hybridization value between the representative strain CCBAU 83284 (genospecies VII) and the type strain of was 90.1 %. Genospecies VII was thus defined as . The DNA–DNA relatedness value for representative strains of genospecies V or VI with the related reference strains of recognized species were always lower than 60 %. Low values of DNA–DNA hybridization (32.79 %) between representative strains of genospecies V (CCBAU 83330) and of VI (CCBAU 83306) were also observed. Based upon these results, two novel species are proposed: sp. nov. represented by genospecies V (type strain, CCBAU 83330=LMG 23949=HAMBI 2974) and sp. nov. represented by genospecies VI (type strain, CCBAU 83306=LMG 24338=HAMBI 2973). Strain CCBAU 83278 grouped as the most peripheral member with genospecies VI in SDS-PAGE of whole-cell proteins and BOX-PCR analysis and in the phylogenetic tree of 16S-23S rRNA intergenic spacer (IGS) sequences. The results of analyses of , and gene sequences, as well as those of DNA–DNA hybridization studies, strongly supported the suggestion that this strain belonged to a species quite different from genospecies V and VI and from any other recognized species of the genus . As only one strain has been isolated to date, strain CCBAU 83278 was not proposed as a novel species in this study. sp. nov. and sp. nov. could be differentiated from each other as well as from recognized species of the genus on the basis of phenotypic characteristics. The symbiotic loci ( and ) of the two novel species formed two phylogenetic branches related to and . The type strains of the two novel species were able to nodulate , , and but not , , , or .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.2008/000125-0
2008-11-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/11/2610.html?itemId=/content/journal/ijsem/10.1099/ijs.0.2008/000125-0&mimeType=html&fmt=ahah

References

  1. Allen, O. N. & Allen, E. K. ( 1981; ). The Leguminosae. A Source Book of Characteristics, Uses and Nodulation. Madison: University of Wisconsin Press.
  2. Brunel, B., Rome, S., Ziani, R. & Cleyet-Marel, J. C. ( 1996; ). Comparison of nucleotide diversity and symbiotic properties of Rhizobium meliloti populations from annual Medicago species. FEMS Microbiol Ecol 19, 71–82.[CrossRef]
    [Google Scholar]
  3. Chen, W. X., Yan, G. H. & Li, J. L. ( 1988; ). Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38, 392–397.[CrossRef]
    [Google Scholar]
  4. Chen, W. X., Li, G. S., Qi, Y. L., Wang, E. T., Yuan, H. L. & Li, J. L. ( 1991; ). Rhizobium huakuii sp. nov., isolated from the root nodules of Astragalus sinicus. Int J Syst Bacteriol 41, 275–280.[CrossRef]
    [Google Scholar]
  5. Chen, W. X., Wang, E. T., Wang, S. Y., Li, Y. B., Chen, X. Q. & Li, Y. ( 1995; ). Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People's Republic of China. Int J Syst Bacteriol 45, 153–159.[CrossRef]
    [Google Scholar]
  6. Chen, W. X., Tan, Z. Y., Gao, J. L., Li, Y. & Wang, E. T. ( 1997; ). Rhizobium hainanense sp. nov., isolated from tropical legumes. Int J Syst Bacteriol 47, 870–873.[CrossRef]
    [Google Scholar]
  7. Cho, J. C. & Tiedje, J. M. ( 2000; ). Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66, 5448–5456.[CrossRef]
    [Google Scholar]
  8. De Ley, J. ( 1970; ). Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101, 738–754.
    [Google Scholar]
  9. Gao, J. L., Sun, J. G., Li, Y., Wang, E. T. & Chen, W. X. ( 1994; ). Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan province of China. Int J Syst Bacteriol 44, 151–158.[CrossRef]
    [Google Scholar]
  10. Gao, J. L., Turner, S. L., Kan, F. L., Wang, E. T., Tan, Z. Y., Qiu, Y. H., Gu, J., Terefework, Z., Young, J. P. & other authors ( 2004; ). Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov. isolated from Astragalus adsurgens growing in the northern regions of China. Int J Syst Evol Microbiol 54, 2003–2012.[CrossRef]
    [Google Scholar]
  11. Gibson, A. H. ( 1980; ). Methods for legumes in glasshouse and controlled environment cabinets. In Methods for Evaluating Biological Nitrogen Fixation, pp. 139–184. Edited by F. J. Bergersen. Wiley: New York.
  12. Graham, P. H., Sadowsky, M. J., Keyser, H. H., Barnet, Y. M., Bradley, R. S., Cooper, J. E., De Ley, D. J., Jarvis, B. D. W., Roslycky, E. B. & other authors ( 1991; ). Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol 41, 582–587.[CrossRef]
    [Google Scholar]
  13. Han, T. X., Wang, E. T., Han, L. L., Chen, W. F., Sui, X. H. & Chen, W. X. ( 2008; ). Molecular diversity and phylogeny of rhizobia associated with wild legumes native to Xinjiang, China. Syst Appl Microbiol 31, 287–301.[CrossRef]
    [Google Scholar]
  14. Haukka, K., Lindström, K. & Young, J. P. ( 1998; ). Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64, 419–426.
    [Google Scholar]
  15. Healy, M., Huong, J., Bittner, T., Lising, M., Frye, S., Raza, S., Schrock, R., Manry, J., Renwick, A. & other authors ( 2005; ). Microbial DNA typing by automated repetitive-sequence-based PCR. J Clin Microbiol 43, 199–207.[CrossRef]
    [Google Scholar]
  16. Hurek, T., Wagner, B. & Reinhold-Hurek, B. ( 1997; ). Identification of N2-fixing plant- and fungus-associated Azoarcus species by PCR-based genomic fingerprints. Appl Environ Microbiol 63, 4331–4339.
    [Google Scholar]
  17. Jensen, M. A., Webster, J. A. & Straus, N. ( 1993; ). Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol 59, 945–952.
    [Google Scholar]
  18. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. London: Academic Press.
  19. Kimura, M. ( 1983; ). The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.
  20. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  21. Laguerre, G., Mavingui, P., Allard, M. R., Charnay, M. P., Louvrier, P., Mazurier, S. I., Rigottier-Gois, L. & Amarger, N. ( 1996; ). Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl Environ Microbiol 62, 2029–2036.
    [Google Scholar]
  22. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganism. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  23. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  24. Navarro, E., Simonet, P., Normand, P. & Bardin, R. ( 1992; ). Characterization of natural populations of Nitrobacter spp. using PCR/RFLP analysis of the ribosomal intergenic spacer. Arch Microbiol 157, 107–115.
    [Google Scholar]
  25. Nick, G. & Lindström, K. ( 1994; ). Use of repetitive sequences and the polymerase chain reaction to fingerprint the genomic DNA of Rhizobium galegae strains and to identify the DNA obtained by sonicating liquid cultures and root nodules. Syst Appl Microbiol 17, 265–273.[CrossRef]
    [Google Scholar]
  26. Ponsonnet, C. & Nesme, X. ( 1994; ). Identification of Agrobacterium strains by PCR-RFLP analysis of pTi and chromosomal regions. Arch Microbiol 161, 300–309.
    [Google Scholar]
  27. Rademaker, J. L., Hoste, B., Louws, F. J., Kersters, K., Swings, J., Vauterin, L., Vauterin, P. & de Bruijn, F. J. ( 2000; ). Comparison of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system. Int J Syst Evol Microbiol 50, 665–677.[CrossRef]
    [Google Scholar]
  28. Rivas, R., Velázquez, E., Willems, A., Vizcaíno, N., Subba-Rao, N. S., Mateos, P. F., Gillis, M., Dazzo, F. B. & Martínez-Molina, E. ( 2002; ). A new species of Devosia that forms a unique nitrogen-fixing root nodule symbiosis with the aquatic legume Neptunia natans (L. f.) Druce. Appl Environ Microbiol 68, 5217–5222.[CrossRef]
    [Google Scholar]
  29. Rzhetsky, A. & Nei, M. ( 1993; ). Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 10, 1073–1095.
    [Google Scholar]
  30. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  31. Sarita, S., Sharma, P. K., Priefer, U. B. & Prell, J. ( 2005; ). Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54, 1–11.[CrossRef]
    [Google Scholar]
  32. Sasser, M. ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  33. Scholla, M. H. & Elkan, G. H. ( 1984; ). Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int J Syst Bacteriol 34, 484–486.[CrossRef]
    [Google Scholar]
  34. Swofford, D. L. ( 1993; ). paup: Phylogenetic Analysis Using Parsimony, version 3.1.1. Champaign, IL: Illinois Natural History Survey.
  35. Tajima, F. & Nei, M. ( 1984; ). Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1, 269–285.
    [Google Scholar]
  36. Tamura, K. & Nei, M. ( 1993; ). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10, 512–526.
    [Google Scholar]
  37. Tan, Z. Y., Xu, X. D., Wang, E. T., Gao, J. L., Martínez-Romero, E. & Chen, W. X. ( 1997; ). Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. Int J Syst Bacteriol 47, 874–879.[CrossRef]
    [Google Scholar]
  38. Tan, Z. Y., Kan, F. L., Peng, G. X., Wang, E. T., Reinhold-Hurek, B. & Chen, W. X. ( 2001; ). Rhizobium yanglingense sp. nov., isolated from arid and semi-arid regions in China. Int J Syst Evol Microbiol 51, 909–914.[CrossRef]
    [Google Scholar]
  39. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  40. Tighe, S. W., de Lajudie, P., Dipietro, K., Lindström, K., Nick, G. & Jarvis, B. D. ( 2000; ). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50, 787–801.[CrossRef]
    [Google Scholar]
  41. van Berkum, P., Beyene, D., Bao, G., Campbell, T. A. & Eardly, B. D. ( 1998; ). Rhizobium mongolense sp. nov. is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(L.) Ledebour]. Int J Syst Bacteriol 48, 13–22.[CrossRef]
    [Google Scholar]
  42. Vauterin, L. & Vauterin, P. ( 1992; ). Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur Microbiol 1, 37–41.
    [Google Scholar]
  43. Versalovic, J., Schneider, M., de Brujin, F. J. & Lupski, J. R. ( 1994; ). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5, 25–40.
    [Google Scholar]
  44. Vincent, J. M. ( 1970; ). Manual for the Practical Study of Root-Nodule Bacteria. IBP handbook 15. Oxford: Blackwell.
  45. Vinuesa, P., Rademaker, J. L., de Bruijn, F. J. & Werner, D. ( 1998; ). Genotypic characterization of Bradyrhizobium strains nodulating endemic woody legumes of the Canary Islands by PCR-restriction fragment length polymorphism analysis of genes encoding 16S rRNA and 16S–23S rDNA intergenic spacers, repetitive extragenic palindromic PCR genomic fingerprinting, and partial 16S rDNA sequencing. Appl Environ Microbiol 64, 2096–2104.
    [Google Scholar]
  46. Vinuesa, P., Silva, C., Lorite, M. J., Izaguirre-Mayoral, M. L., Bedmar, E. J. & Martínez-Romero, E. ( 2005a; ). Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28, 702–716.[CrossRef]
    [Google Scholar]
  47. Vinuesa, P., Silva, C., Werner, D. & Martínez-Romero, E. ( 2005b; ). Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34, 29–54.[CrossRef]
    [Google Scholar]
  48. Wang, E. T., van Berkum, P., Sui, X. H., Beyene, D., Chen, W. X. & Martínez-Romero, E. ( 1999; ). Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soil and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49, 51–65.[CrossRef]
    [Google Scholar]
  49. Wang, F. Q., Wang, E. T., Zhang, Y. F. & Chen, W. X. ( 2006; ). Characterization of rhizobia isolated from Albizia spp. in comparison with microsymbionts of Acacia spp. and Leucaena leucocephala grown in China. Syst Appl Microbiol 29, 502–517.[CrossRef]
    [Google Scholar]
  50. Wang, F. Q., Wang, E. T., Liu, J., Chen, Q., Sui, X. H., Chen, W. F. & Chen, W. X. ( 2007; ). Mesorhizobium albiziae sp. nov., a novel bacterium nodulating Albizia kalkora in a subtropical region of China. Int J Syst Evol Microbiol 57, 1192–1199.[CrossRef]
    [Google Scholar]
  51. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  52. Wei, G. H., Wang, E. T., Tan, Z. Y., Zhu, M. E. & Chen, W. X. ( 2002; ). Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera spp. and Kummerowia stipulacea. Int J Syst Evol Microbiol 52, 2231–2239.[CrossRef]
    [Google Scholar]
  53. Wei, G. H., Tan, Z. Y., Zhu, M. E., Wang, E. T., Han, S. Z. & Chen, W. X. ( 2003; ). Characterization of rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizobium loessense sp. nov. Int J Syst Evol Microbiol 53, 1575–1583.[CrossRef]
    [Google Scholar]
  54. Xu, L. M., Ge, C., Cui, Z., Li, J. & Fan, H. ( 1995; ). Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int J Syst Bacteriol 45, 706–711.[CrossRef]
    [Google Scholar]
  55. Yao, Z. Y., Kan, F. L., Wang, E. T., Wei, G. H. & Chen, W. X. ( 2002; ). Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52, 2219–2230.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.2008/000125-0
Loading
/content/journal/ijsem/10.1099/ijs.0.2008/000125-0
Loading

Data & Media loading...

Supplements

Dendrograms constructed from IGS-RFLP, BOX-PCR and SDS-PAGE analyses and additional phylogenetic trees based on IGS, , , and gene sequences. [ PDF] 319 KB

PDF

Fatty acid profiles of sp. nov. and sp. nov. in comparison with the closest related taxa. [ PDF] 137 KB

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error