sp. nov., a psychrotolerant, ammonia-oxidizing bacterium from sandy lake sediment Free

Abstract

A Gram-negative, spiral-shaped, chemolithotrophic, ammonia-oxidizing bacterium, designated APG3, was isolated into pure culture from sandy lake sediment collected from Green Lake, Seattle, WA, USA. Phylogenetic analyses based on the 16S rRNA gene sequence showed that strain APG3 belongs to cluster 0 of the genus , which is presently not represented by described species, with (cluster 3) as the closest species with a validly published name (identity of 98.6 % to the type strain). Strain APG3 grew at 4 °C but could not grow at 35 °C, indicating that this bacterium is psychrotolerant. Remarkably, the strain was able to grow over a wide range of pH (pH 5–9), which was greater than the pH range of any studied ammonia-oxidizing bacteria in pure culture. The DNA G+C content of the APG3 genome is 53.5 %, which is similar to that of ATCC 25196 (53.9 %) but higher than that of ATCC 19718 (50.7 %) and C71 (48.5 %). The average nucleotide identity (ANI) calculated for the genomes of strain APG3 and ATCC 25196 was 75.45 %, significantly lower than the value of 95 % ANI that corresponds to the 70 % species-level cut-off based on DNA–DNA hybridization. Overall polyphasic taxonomy study indicated that strain APG3 represents a novel species in the genus , for which the name sp. nov. is proposed (type strain APG3 = NCIMB 14869 = LMG 27536 = ATCC BAA-2542).

Funding
This study was supported by the:
  • Danish Research Council (Award 26-03-0250)
  • Florida Gulf Coast University Office of Research and Graduate Studies Internal Grant Program
  • UNC Charlotte Research Incentive Funds (Award 675612)
  • United States National Science Foundation (NSF) Microbial Interactions Program (Award MCB-0604448)
  • NSF Biological Oceanography (Award OCE-0623174)
  • Natural Sciences and Engineering Research Council of Canada
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.070789-0
2015-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/1/242.html?itemId=/content/journal/ijsem/10.1099/ijs.0.070789-0&mimeType=html&fmt=ahah

References

  1. Aakra A., Utåker J. B., Pommerening-Röser A., Koops H. P., Nes I. F. ( 2001 ). Detailed phylogeny of ammonia-oxidizing bacteria determined by rDNA sequences and DNA homology values. . Int J Syst Evol Microbiol 51, 20212030. [View Article] [PubMed]
    [Google Scholar]
  2. Allison S. M., Prosser J. I. ( 1993 ). Ammonia oxidation at low pH by attached populations of nitrifying bacteria. . Soil Biology and Biochemistry 25, 935941. [CrossRef]
    [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990 ). Basic local alignment search tool. . J Mol Biol 215, 403410. [View Article] [PubMed]
    [Google Scholar]
  4. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M. & other authors ( 2008 ). The rast server: rapid annotations using subsystems technology. . BMC Genomics 9, 75. [View Article] [PubMed]
    [Google Scholar]
  5. Burton S. A. Q., Prosser J. I. ( 2001 ). Autotrophic ammonia oxidation at low pH through urea hydrolysis. . Appl Environ Microbiol 67, 29522957. [View Article] [PubMed]
    [Google Scholar]
  6. Campbell M. A., Chain P. S. G., Dang H., El Sheikh A. F., Norton J. M., Ward N. L., Ward B. B., Klotz M. G. ( 2011 ). Nitrosococcus watsonii sp. nov., a new species of marine obligate ammonia-oxidizing bacteria that is not omnipresent in the world’s oceans: calls to validate the names ‘Nitrosococcus halophilus’ and ‘Nitrosomonas mobilis’. . FEMS Microbiol Ecol 76, 3948. [View Article] [PubMed]
    [Google Scholar]
  7. Dell E. A., Bowman D., Rufty T., Shi W. ( 2008 ). Intensive management affects composition of betaproteobacterial ammonia oxidizers in turfgrass systems. . Microb Ecol 56, 178190. [View Article] [PubMed]
    [Google Scholar]
  8. Galloway J. N. ( 1998 ). The global nitrogen cycle: changes and consequences. . Environ Pollut 102, 1524. [View Article]
    [Google Scholar]
  9. Garcia J. C., Urakawa H., Le V. Q., Stein L. Y., Klotz M. G., Nielsen J. L. ( 2013 ). Draft genome sequence of Nitrosospira sp. strain APG3, a psychrotolerant ammonia-oxidizing bacterium isolated from sandy lake sediment. . Genome Announc 1, e00930-13. [View Article] [PubMed]
    [Google Scholar]
  10. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M. ( 2007 ). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57, 8191. [View Article] [PubMed]
    [Google Scholar]
  11. Harms H., Koops H.-P., Wehrmann H. ( 1976 ). An ammonia-oxidizing bacterium, Nitrosovibrio tenuis nov. gen. nov. sp.. Arch Microbiol 108, 105111. [View Article] [PubMed]
    [Google Scholar]
  12. Kawaguchi K., Kyuma K. ( 1974 ). Paddy soils in tropical Asia. Part 1. Description of fertility characteristics. . Southeast Asian Stud 12, 324.
    [Google Scholar]
  13. Ke X., Lu Y. ( 2012 ). Adaptation of ammonia-oxidizing microorganisms to environment shift of paddy field soil. . FEMS Microbiol Ecol 80, 8797. [View Article] [PubMed]
    [Google Scholar]
  14. Koops H. P., Böttcher B., Möller U. C., Pommerening-Röser A., Stehr G. ( 1990 ). Description of a new species of Nitrosococcus . . Archives of Microbiology 154, 244248. [CrossRef]
    [Google Scholar]
  15. Koops H.-P., Harms H. ( 1985 ). Deoxyribonucleic acid homologies among 96 strains of ammonia-oxidizing bacteria. . Arch Microbiol 141, 214218. [View Article] [PubMed]
    [Google Scholar]
  16. Koops H.-P., Pommerening-Röser A. ( 2001 ). Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. . FEMS Microbiol Ecol 37, 19. [View Article]
    [Google Scholar]
  17. Koops H.-P., Böttcher B., Möller U. C., Pommerening-Röser A., Stehr G. ( 1991 ). Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov.. J Gen Microbiol 137, 16891699. [View Article]
    [Google Scholar]
  18. Koops H.-P., Purkhold U., Pommerening-Röser A., Timmermann G., Wagner M. ( 2006 ). The lithoautotrophic ammonia-oxidizing bacteria. . In The Prokaryotes, , 3rd edn., vol. 5, pp. 778811. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. . New York:: Springer;. [View Article]
    [Google Scholar]
  19. Koper T. E., El-Sheikh A. F., Norton J. M., Klotz M. G. ( 2004 ). Urease-encoding genes in ammonia-oxidizing bacteria. . Appl Environ Microbiol 70, 23422348. [View Article] [PubMed]
    [Google Scholar]
  20. Ma K., Conrad R., Lu Y. ( 2013 ). Dry/wet cycles change the activity and population dynamics of methanotrophs in rice field soil. . Appl Environ Microbiol 79, 49324939. [View Article] [PubMed]
    [Google Scholar]
  21. Martens-Habbena W., Berube P. M., Urakawa H., de la Torre J. R., Stahl D. A. ( 2009 ). Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. . Nature 461, 976979. [View Article] [PubMed]
    [Google Scholar]
  22. Muyzer G., Teske A., Wirsen C. O., Jannasch H. W. ( 1995 ). Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. . Arch Microbiol 164, 165172. [View Article] [PubMed]
    [Google Scholar]
  23. Norton J. M., Low J. M., Klotz M. G. ( 1996 ). The gene encoding ammonia monooxygenase subunit A exists in three nearly identical copies in Nitrosospira sp. NpAV. . FEMS Microbiol Lett 139, 181188. [View Article] [PubMed]
    [Google Scholar]
  24. Norton J. M., Alzerreca J. J., Suwa Y., Klotz M. G. ( 2002 ). Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. . Arch Microbiol 177, 139149. [View Article] [PubMed]
    [Google Scholar]
  25. Nugroho R. A., Röling W. F., Laverman A. M., Zoomer H. R., Verhoef H. A. ( 2005 ). Presence of Nitrosospira cluster 2 bacteria corresponds to N transformation rates in nine acid Scots pine forest soils. . FEMS Microbiol Ecol 53, 473481. [View Article] [PubMed]
    [Google Scholar]
  26. Olila O. G., Reddy K. R. ( 1995 ). Influence of pH on phosphorus retention in oxidized lake sediments. . Soil Sci Soc Am J 59, 946959. [View Article]
    [Google Scholar]
  27. Pastor J., Post W. M. ( 1986 ). Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. . Biogeochemistry 2, 327. [View Article]
    [Google Scholar]
  28. Pezeshki S. R. ( 2001 ). Wetland plant responses to soil flooding. . Environ Exp Bot 46, 299312. [View Article]
    [Google Scholar]
  29. Purkhold U., Pommerening-Röser A., Juretschko S., Schmid M. C., Koops H. P., Wagner M. ( 2000 ). Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. . Appl Environ Microbiol 66, 53685382. [View Article] [PubMed]
    [Google Scholar]
  30. Purkhold U., Wagner M., Timmermann G., Pommerening-Röser A., Koops H. P. ( 2003 ). 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. . Int J Syst Evol Microbiol 53, 14851494. [View Article] [PubMed]
    [Google Scholar]
  31. Ratkowsky D. A., Olley J., McMeekin T. A., Ball A. ( 1982 ). Relationship between temperature and growth rate of bacterial cultures. . J Bacteriol 149, 15.[PubMed]
    [Google Scholar]
  32. Rotthauwe J. H., Witzel K. P., Liesack W. ( 1997 ). The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. . Appl Environ Microbiol 63, 47044712.[PubMed]
    [Google Scholar]
  33. Schramm A., De Beer D., Wagner M., Amann R. ( 1998 ). Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. . Appl Environ Microbiol 64, 34803485.[PubMed]
    [Google Scholar]
  34. Stackebrandt E., Goebel B. M. ( 1994 ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44, 846849. [CrossRef]
    [Google Scholar]
  35. Tamura K., Nei M. ( 1993 ). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10, 512526.[PubMed]
    [Google Scholar]
  36. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  37. Urakawa H., Kurata S., Fujiwara T., Kuroiwa D., Maki H., Kawabata S., Hiwatari T., Ando H., Kawai T. & other authors ( 2006 ). Characterization and quantification of ammonia-oxidizing bacteria in eutrophic coastal marine sediments using polyphasic molecular approaches and immunofluorescence staining. . Environ Microbiol 8, 787803. [View Article] [PubMed]
    [Google Scholar]
  38. Urakawa H., Martens-Habbena W., Stahl D. A. ( 2010 ). High abundance of ammonia-oxidizing Archaea in coastal waters, determined using a modified DNA extraction method. . Appl Environ Microbiol 76, 21292135. [View Article] [PubMed]
    [Google Scholar]
  39. Watson S. W. ( 1971 ). Reisolation of Nitrosospira briensis S. Winogradsky and H. Winogradsky 1933. . Arch Mikrobiol 75, 179188. [View Article] [PubMed]
    [Google Scholar]
  40. Watson S. W., Mandel M. ( 1971 ). Comparison of the morphology and deoxyribonucleic acid composition of 27 strains of nitrifying bacteria. . Journal of Bacteriology 107, 563569.
    [Google Scholar]
  41. Watson S. W., Graham L. B., Remsen C. C., Valois F. W. ( 1971 ). A lobular, ammonia-oxidizing bacterium, Nitrosolobus multiformis nov. gen. nov. sp.. Arch Mikrobiol 76, 183203. [View Article] [PubMed]
    [Google Scholar]
  42. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. & other authors ( 1987 ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37, 463464. [View Article]
    [Google Scholar]
  43. Winogradsky S., Winogradsky H. ( 1933 ). Études sur la microbiologie du sol. VII. Nouvelles recherches sur les organismes de la nitrification. . Ann Inst Pasteur (Paris) 50, 350434 (in French).
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.070789-0
Loading
/content/journal/ijsem/10.1099/ijs.0.070789-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed