1887

Abstract

A novel actinobacterium, strain BC637, was isolated from a biodeteriogenic biofilm sample collected in 2009 in the Saint Callixstus Roman catacomb. The strain was found to belong to the genus by analysis of the 16S rRNA gene. Phylogenetic analysis using the 16S rRNA gene and the , , , and concatenated gene sequences showed that strain BC637 was most closely related to the type strains of and . DNA–DNA hybridization experiments confirmed that strain BC637 is a genomic species that is distinct from its closest phylogenetic relatives, DSM 23718 (63 % DNA relatedness) and LU14 (63 % DNA relatedness). Physiological comparisons showed that strain BC637 is phenotypically distinct from the type strains of and . Thus, strain BC637 represents the type strain of a novel species, for which the name Kribella sp. nov. is proposed ( = DSM 28967 = NRRL B-59155).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.070672-0
2015-02-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/2/491.html?itemId=/content/journal/ijsem/10.1099/ijs.0.070672-0&mimeType=html&fmt=ahah

References

  1. Albertano P., Moscone D., Palleschi G., Hermosín B., Saiz-Jimenez C., Sanchez-Moral S., Hernandez Marine M., Urzì C., Groth I.. & other authors ( 2003;). Cyanobacteria attack rocks (CATS): control and preventive strategies to avoid damage caused by cyanobacteria and associated microorganisms in Roman hypogean monuments. . In Molecular Biology and Cultural Heritage, pp. 151–162. Edited by Saiz-Jimenez C... Lisse:: Balkema;.
    [Google Scholar]
  2. Atlas R. M.. ( 2004;). Handbook of Microbiological Media, , 3rd edn.. Boca Raton, FL:: CRC Press;. [CrossRef]
    [Google Scholar]
  3. Cook A. E., Meyers P. R.. ( 2003;). Rapid identification of filamentous actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns. . Int J Syst Evol Microbiol 53:, 1907–1915. [CrossRef][PubMed]
    [Google Scholar]
  4. Curtis S. M., Meyers P. R.. ( 2012;). Multilocus sequence analysis of the actinobacterial genus Kribbella. . Syst Appl Microbiol 35:, 441–446. [CrossRef][PubMed]
    [Google Scholar]
  5. Everest G. J., Meyers P. R.. ( 2008;). Kribbella hippodromi sp. nov., isolated from soil from a racecourse in South Africa. . Int J Syst Evol Microbiol 58:, 443–446. [CrossRef][PubMed]
    [Google Scholar]
  6. Everest G. J., Curtis S. M., De Leo F., Urzì C., Meyers P. R.. ( 2013;). Kribbella albertanoniae sp. nov., isolated from a Roman catacomb, and emended description of the genus Kribbella. . Int J Syst Evol Microbiol 63:, 3591–3596. [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  8. Kaewkla O., Franco C. M. M.. ( 2013;). Kribbella endophytica sp. nov., an endophytic actinobacterium isolated from the surface-sterilized leaf of a native apricot tree. . Int J Syst Evol Microbiol 63:, 1249–1253. [CrossRef][PubMed]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  10. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  11. Kirby B. M., Everest G. J., Meyers P. R.. ( 2010;). Phylogenetic analysis of the genus Kribbella based on the gyrB gene: proposal of a gyrB-sequence threshold for species delineation in the genus Kribbella. . Antonie van Leeuwenhoek 97:, 131–142. [CrossRef][PubMed]
    [Google Scholar]
  12. Lechevalier M. P., Lechevalier H.. ( 1970;). Chemical composition as a criterion in the classification of aerobic actinomycetes. . Int J Syst Bacteriol 20:, 435–443. [CrossRef]
    [Google Scholar]
  13. Mohammadipanah F., Hamedi J., Göker M., Fiebig A., Pukall R., Spröer C., Klenk H.-P.. ( 2013;). Kribbella shirazensis sp. nov., isolated from Iranian soil. . Int J Syst Evol Microbiol 63:, 3369–3374. [CrossRef][PubMed]
    [Google Scholar]
  14. Park Y. H., Yoon J. H., Shin Y. K., Suzuki K., Kudo T., Seino A., Kim H. J., Lee J. S., Lee S. T.. ( 1999;). Classification of ‘Nocardioides fulvus’ IFO 14399 and Nocardioides sp. ATCC 39419 in Kribbella gen. nov., as Kribbella flavida sp. nov. and Kribbella sandramycini sp. nov.. Int J Syst Bacteriol 49:, 743–752. [CrossRef][PubMed]
    [Google Scholar]
  15. Parte, A. C. (2014). List of prokaryotic names with standing in nomenclature. [Accessed May 2014]. http://www.bacterio.net
  16. Reasoner D. J., Geldreich E. E.. ( 1985;). A new medium for the enumeration and subculture of bacteria from potable water. . Appl Environ Microbiol 49:, 1–7.[PubMed]
    [Google Scholar]
  17. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  18. Shirling E. B., Gottlieb D.. ( 1966;). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol 16:, 313–340. [CrossRef]
    [Google Scholar]
  19. Takahashi K., Nei M.. ( 2000;). Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. . Mol Biol Evol 17:, 1251–1258. [CrossRef][PubMed]
    [Google Scholar]
  20. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.. Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  21. Trujillo M. E., Kroppenstedt R. M., Schumann P., Martínez-Molina E.. ( 2006;). Kribbella lupini sp. nov., isolated from the roots of Lupinus angustifolius. . Int J Syst Evol Microbiol 56:, 407–411. [CrossRef][PubMed]
    [Google Scholar]
  22. Urzì C., De Leo F.. ( 2001;). Sampling with adhesive tape strips: an easy and rapid method to monitor microbial colonization on monument surfaces. . J Microbiol Methods 44:, 1–11. [CrossRef][PubMed]
    [Google Scholar]
  23. Urzì C., De Leo F., Schumann P.. ( 2008;). Kribbella catacumbae sp. nov. and Kribbella sancticallisti sp. nov., isolated from whitish-grey patinas in the catacombs of St Callistus in Rome, Italy. . Int J Syst Evol Microbiol 58:, 2090–2097. [CrossRef][PubMed]
    [Google Scholar]
  24. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  25. Williams S. T., Goodfellow M., Alderson G.. ( 1989;). Genus Streptomyces Waksman and Henrici 1943, 339AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 4, pp. 2452–2492. Edited by Williams S. T., Sharpe M. E., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.070672-0
Loading
/content/journal/ijsem/10.1099/ijs.0.070672-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error