1887

Abstract

A yellowish-pigmented bacterium, designated strain PLGR-1, was isolated from the root of collected from Taibai Mountain in Shaanxi Province, north-west China, and was subjected to a taxonomic study by using a polyphasic approach. Cells of strain PLGR-1 were Gram-stain-negative, strictly aerobic, rod-shaped, non-spore-forming and motile with a single polar flagellum. Growth occurred at 7–33 °C (optimum, 25–28 °C), at pH 5.0–10.0 (optimum, pH 6.0–7.0) and with 0–0.5 % (w/v) NaCl (optimum, 0 %). The predominant respiratory quinone was ubiquinone-8 (Q-8) and the major cellular fatty acids were summed feature 3 (comprising Cω7 and/or Cω6), C and summed feature 8 (comprising Cω7 and/or Cω6). The major polyamines were putrescine and 2-hydroxyputrescine and the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The DNA GC content was 69.8 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain PLGR-1 belonged to the class and formed a tight phyletic lineage with members of the genus . Strain PLGR-1 was most closely related to DSM 11587 and DSM 19916, with 16S rRNA gene sequence similarities of 98.5 and 98.0 %, respectively. The DNA–DNA relatedness values between strain PLGR-1 and the type strains of and were 46.3 and 14.7 %, respectively. Based on the phenotypic, phylogenetic and genotypic data, strain PLGR-1 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is PLGR-1 ( = CCTCC AB 2013018 = KCTC 32299 = LMG 27607).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.070318-0
2015-02-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/2/479.html?itemId=/content/journal/ijsem/10.1099/ijs.0.070318-0&mimeType=html&fmt=ahah

References

  1. Busse H.-J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  2. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J.. ( 2002;). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov.. Int J Syst Evol Microbiol 52:, 1551–1558. [CrossRef][PubMed]
    [Google Scholar]
  3. Doetsch R. N.. ( 1981;). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 21–33. Edited by Gerdhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Fitch W. M.. ( 1971;). Towards defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  8. Goto M., Kuwata H.. ( 1988;). Rhizobacter daucus gen. nov., sp. nov., the causal agent of carrot bacterial gall. . Int J Syst Bacteriol 38:, 233–239. [CrossRef]
    [Google Scholar]
  9. Kim B.-C., Poo H., Lee K. H., Kim M. N., Kwon O.-Y., Shin K.-S.. ( 2012a;). Mucilaginibacter angelicae sp. nov., isolated from the rhizosphere of Angelica polymorpha Maxim. . Int J Syst Evol Microbiol 62:, 55–60. [CrossRef][PubMed]
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012b;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  11. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  12. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  14. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  15. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  16. Schenkel E., Berlaimont V., Dubois J., Helson-Cambier M., Hanocq M.. ( 1995;). Improved high-performance liquid chromatographic method for the determination of polyamines as their benzoylated derivatives: application to P388 cancer cells. . J Chromatogr B Biomed Appl 668:, 189–197. [CrossRef][PubMed]
    [Google Scholar]
  17. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  18. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  19. Stackebrandt E., Verbarg S., Frühling A., Busse H.-J., Tindall B. J.. ( 2009;). Dissection of the genus Methylibium: reclassification of Methylibium fulvum as Rhizobacter fulvus comb. nov., Methylibium aquaticum as Piscinibacter aquaticus gen. nov., comb. nov. and Methylibium subsaxonicum as Rivibacter subsaxonicus gen. nov., comb. nov. and emended descriptions of the genera Rhizobacter and Methylibium. . Int J Syst Evol Microbiol 59:, 2552–2560. [CrossRef][PubMed]
    [Google Scholar]
  20. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  21. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  22. Tindall B. J.. ( 1990;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  23. Trüper H. G., de’ Clari L.. ( 1998;). Taxonomic note: erratum and correction of further specific epithets formed as substantives (nouns) ‘in apposition’. . Int J Syst Bacteriol 48:, 615. [CrossRef]
    [Google Scholar]
  24. Wilson K.. ( 1987;). Preparation of genomic DNA from bacteria. . In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K... New York:: Greene Publishing and Wiley Interscience;.
    [Google Scholar]
  25. Xie C. H., Yokota A.. ( 2003;). Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. . J Gen Appl Microbiol 49:, 345–349. [CrossRef][PubMed]
    [Google Scholar]
  26. Yoon M.-H., Ten L. N., Im W.-T., Lee S. T.. ( 2007;). Methylibium fulvum sp. nov., a member of the Betaproteobacteria isolated from ginseng field soil, and emended description of the genus Methylibium. . Int J Syst Evol Microbiol 57:, 2062–2066. [CrossRef][PubMed]
    [Google Scholar]
  27. Zhang L., Wang Y., Wei L., Wang Y., Shen X., Li S.. ( 2013;). Taibaiella smilacinae gen. nov., sp. nov., an endophytic member of the family Chitinophagaceae isolated from the stem of Smilacina japonica, and emended description of Flavihumibacter petaseus. . Int J Syst Evol Microbiol 63:, 3769–3776. [CrossRef][PubMed]
    [Google Scholar]
  28. Zhang L., Wei L., Zhu L., Li C., Wang Y., Shen X.. ( 2014;). Pseudoxanthomonas gei sp. nov., a novel endophytic bacterium isolated from the stem of Geum aleppicum. . Antonie van Leeuwenhoek 105:, 653–661. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.070318-0
Loading
/content/journal/ijsem/10.1099/ijs.0.070318-0
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error