1887

Abstract

The constitute one of the largest groups within the . The hierarchical relationship among members of this large class, which comprises a single order and a single family, has proven difficult to determine based upon 16S rRNA gene trees and morphological and physiological characteristics. This work reports detailed phylogenetic and comparative genomic studies on >100 halobacterial (haloarchaeal) genomes containing representatives from 30 genera to investigate their evolutionary relationships. In phylogenetic trees reconstructed on the basis of 32 conserved proteins, using both neighbour-joining and maximum-likelihood methods, two major clades (clades A and B) encompassing nearly two-thirds of the sequenced haloarchaeal species were strongly supported. Clades grouping the same species/genera were also supported by the 16S rRNA gene trees and trees for several individual highly conserved proteins (RpoC, EF-Tu, UvrD, GyrA, EF-2/EF-G). In parallel, our comparative analyses of protein sequences from haloarchaeal genomes have identified numerous discrete molecular markers in the form of conserved signature indels (CSI) in protein sequences and conserved signature proteins (CSPs) that are found uniquely in specific groups of haloarchaea. Thirteen CSIs in proteins involved in diverse functions and 68 CSPs that are uniquely present in all or most genome-sequenced haloarchaea provide novel molecular means for distinguishing members of the class from all other prokaryotes. The members of clade A are distinguished from all other haloarchaea by the unique shared presence of two CSIs in the ribose operon protein and small GTP-binding protein and eight CSPs that are found specifically in members of this clade. Likewise, four CSIs in different proteins and five other CSPs are present uniquely in members of clade B and distinguish them from all other haloarchaea. Based upon their specific clustering in phylogenetic trees for different gene/protein sequences and the unique shared presence of large numbers of molecular signatures, members of clades A and B are indicated to be distinct from all other haloarchaea because of their uniquely shared evolutionary histories. Based upon these results, it is proposed that clades A and B be recognized as two new orders, ord. nov. and ord. nov., within the class , containing the novel families fam. nov. and fam. nov. Other members of the class that are not members of these two orders will remain part of the emended order in an emended family .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.070136-0
2015-03-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/3/1050.html?itemId=/content/journal/ijsem/10.1099/ijs.0.070136-0&mimeType=html&fmt=ahah

References

  1. Ajawatanawong P., Baldauf S. L.. ( 2013;). Evolution of protein indels in plants, animals and fungi. . BMC Evol Biol 13:, 140. [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  3. Amoozegar M. A., Makhdoumi-Kakhki A., Shahzadeh Fazeli S. A., Azarbaijani R., Ventosa A.. ( 2012;). Halopenitus persicus gen. nov., sp. nov., an archaeon from an inland salt lake. . Int J Syst Evol Microbiol 62:, 1932–1936. [CrossRef][PubMed]
    [Google Scholar]
  4. Anderson I., Scheuner C., Göker M., Mavromatis K., Hooper S. D., Porat I., Klenk H. P., Ivanova N., Kyrpides N.. ( 2011;). Novel insights into the diversity of catabolic metabolism from ten haloarchaeal genomes. . PLoS ONE 6:, e20237. [CrossRef][PubMed]
    [Google Scholar]
  5. Badger J. H., Eisen J. A., Ward N. L.. ( 2005;). Genomic analysis of Hyphomonas neptunium contradicts 16S rRNA gene-based phylogenetic analysis: implications for the taxonomy of the orders ‘Rhodobacterales’ and Caulobacterales. . Int J Syst Evol Microbiol 55:, 1021–1026. [CrossRef][PubMed]
    [Google Scholar]
  6. Bardavid R. E., Mana L., Oren A.. ( 2007;). Haloplanus natans gen. nov., sp. nov., an extremely halophilic, gas-vacuolate archaeon isolated from Dead Sea–Red Sea water mixtures in experimental outdoor ponds. . Int J Syst Evol Microbiol 57:, 780–783. [CrossRef][PubMed]
    [Google Scholar]
  7. Bhandari V., Gupta R. S.. ( 2014;). Molecular signatures for the phylum (class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.) and a new genus Pseudothermotoga gen. nov. with five new combinations. . Antonie van Leeuwenhoek 105:, 143–168. [CrossRef][PubMed]
    [Google Scholar]
  8. Bhandari V., Naushad H. S., Gupta R. S.. ( 2012;). Protein based molecular markers provide reliable means to understand prokaryotic phylogeny and support Darwinian mode of evolution. . Front Cell Infect Microbiol 2:, 98. [CrossRef][PubMed]
    [Google Scholar]
  9. Brochier-Armanet C., Boussau B., Gribaldo S., Forterre P.. ( 2008;). Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. . Nat Rev Microbiol 6:, 245–252. [CrossRef][PubMed]
    [Google Scholar]
  10. Burns D. G., Janssen P. H., Itoh T., Kamekura M., Li Z., Jensen G., Rodríguez-Valera F., Bolhuis H., Dyall-Smith M. L.. ( 2007;). Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. . Int J Syst Evol Microbiol 57:, 387–392. [CrossRef][PubMed]
    [Google Scholar]
  11. Burns D. G., Janssen P. H., Itoh T., Kamekura M., Echigo A., Dyall-Smith M. L.. ( 2010;). Halonotius pteroides gen. nov., sp. nov., an extremely halophilic archaeon recovered from a saltern crystallizer. . Int J Syst Evol Microbiol 60:, 1196–1199. [CrossRef][PubMed]
    [Google Scholar]
  12. Capes M. D., DasSarma P., DasSarma S.. ( 2012;). The core and unique proteins of haloarchaea. . BMC Genomics 13:, 39. [CrossRef][PubMed]
    [Google Scholar]
  13. Castillo A. M., Gutiérrez M. C., Kamekura M., Xue Y., Ma Y., Cowan D. A., Jones B. E., Grant W. D., Ventosa A.. ( 2006a;). Halostagnicola larsenii gen. nov., sp. nov., an extremely halophilic archaeon from a saline lake in Inner Mongolia, China. . Int J Syst Evol Microbiol 56:, 1519–1524. [CrossRef][PubMed]
    [Google Scholar]
  14. Castillo A. M., Gutiérrez M. C., Kamekura M., Ma Y., Cowan D. A., Jones B. E., Grant W. D., Ventosa A.. ( 2006b;). Halovivax asiaticus gen. nov., sp. nov., a novel extremely halophilic archaeon isolated from Inner Mongolia, China. . Int J Syst Evol Microbiol 56:, 765–770. [CrossRef][PubMed]
    [Google Scholar]
  15. Castresana J.. ( 2000;). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. . Mol Biol Evol 17:, 540–552. [CrossRef][PubMed]
    [Google Scholar]
  16. Ciccarelli F. D., Doerks T., von Mering C., Creevey C. J., Snel B., Bork P.. ( 2006;). Toward automatic reconstruction of a highly resolved tree of life. . Science 311:, 1283–1287. [CrossRef][PubMed]
    [Google Scholar]
  17. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T. et al. ( 2009;). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. . Nucleic Acids Res 37: (Database issue), D141–D145. [CrossRef][PubMed]
    [Google Scholar]
  18. Cui H. L., Qiu X. X.. ( 2014;). Salinarubrum litoreum gen. nov., sp. nov.: a new member of the family Halobacteriaceae isolated from Chinese marine solar salterns. . Antonie van Leeuwenhoek 105:, 135–141. [CrossRef][PubMed]
    [Google Scholar]
  19. Cui H. L., Zhang W. J.. ( 2014;). Salinigranum rubrum gen. nov., sp. nov., a member of the family Halobacteriaceae isolated from a marine solar saltern. . Int J Syst Evol Microbiol 64:, 2029–2033. [CrossRef][PubMed]
    [Google Scholar]
  20. Cui H. L., Zhou P. J., Oren A., Liu S. J.. ( 2009;). Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium. . Extremophiles 13:, 31–37. [CrossRef][PubMed]
    [Google Scholar]
  21. Cui H. L., Gao X., Yang X., Xu X. W.. ( 2010a;). Halorussus rarus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. . Extremophiles 14:, 493–499. [CrossRef][PubMed]
    [Google Scholar]
  22. Cui H. L., Gao X., Sun F. F., Dong Y., Xu X. W., Zhou Y. G., Liu H. C., Oren A., Zhou P. J.. ( 2010b;). Halogranum rubrum gen. nov., sp. nov., a halophilic archaeon isolated from a marine solar saltern. . Int J Syst Evol Microbiol 60:, 1366–1371. [CrossRef][PubMed]
    [Google Scholar]
  23. Cui H. L., Li X. Y., Gao X., Xu X. W., Zhou Y. G., Liu H. C., Oren A., Zhou P. J.. ( 2010c;). Halopelagius inordinatus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. . Int J Syst Evol Microbiol 60:, 2089–2093. [CrossRef][PubMed]
    [Google Scholar]
  24. Cui H. L., Yang X., Mou Y. Z.. ( 2011a;). Salinarchaeum laminariae gen. nov., sp. nov.: a new member of the family Halobacteriaceae isolated from salted brown alga Laminaria. . Extremophiles 15:, 625–631. [CrossRef][PubMed]
    [Google Scholar]
  25. Cui H. L., Gao X., Yang X., Xu X. W.. ( 2011b;). Halolamina pelagica gen. nov., sp. nov., a new member of the family Halobacteriaceae. . Int J Syst Evol Microbiol 61:, 1617–1621. [CrossRef][PubMed]
    [Google Scholar]
  26. Cui H. L., Yang X., Gao X., Xu X. W.. ( 2011c;). Halobellus clavatus gen. nov., sp. nov. and Halorientalis regularis gen. nov., sp. nov., two new members of the family Halobacteriaceae. . Int J Syst Evol Microbiol 61:, 2682–2689. [CrossRef][PubMed]
    [Google Scholar]
  27. Cui H. L., Mou Y. Z., Yang X., Zhou Y. G., Liu H. C., Zhou P. J.. ( 2012;). Halorubellus salinus gen. nov., sp. nov. and Halorubellus litoreus sp. nov., novel halophilic archaea isolated from a marine solar saltern. . Syst Appl Microbiol 35:, 30–34. [CrossRef][PubMed]
    [Google Scholar]
  28. DasSarma P., Klebahn G., Klebahn H.. ( 2010;). Translation of Henrich Klebahn’s ‘Damaging agents of the klippfish – a contribution to the knowledge of the salt-loving organisms’. . Saline Syst 6:, 7. [CrossRef][PubMed]
    [Google Scholar]
  29. de la Haba R. R., Márquez M. C., Papke R. T., Ventosa A.. ( 2012;). Multilocus sequence analysis of the family Halomonadaceae. . Int J Syst Evol Microbiol 62:, 520–538. [CrossRef][PubMed]
    [Google Scholar]
  30. Dutilh B. E., Snel B., Ettema T. J., Huynen M. A.. ( 2008;). Signature genes as a phylogenomic tool. . Mol Biol Evol 25:, 1659–1667. [CrossRef][PubMed]
    [Google Scholar]
  31. Echigo A., Minegishi H., Shimane Y., Kamekura M., Itoh T., Usami R.. ( 2013;). Halomicroarcula pellucida gen. nov., sp. nov., a non-pigmented, transparent-colony-forming, halophilic archaeon isolated from solar salt. . Int J Syst Evol Microbiol 63:, 3556–3562. [CrossRef][PubMed]
    [Google Scholar]
  32. Elazari-Volcani B.. ( 1957;). Genus XII. Halobacterium Elazari-Volcani, 1940. . In Bergey’s Manual of Determinative Bacteriology, , 7th edn., pp. 207–212. Edited by Breed R. S., Murray E. G. D., Smith N. R... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  33. Enache M., Itoh T., Fukushima T., Usami R., Dumitru L., Kamekura M.. ( 2007;). Phylogenetic relationships within the family Halobacteriaceae inferred from rpoB′ gene and protein sequences. . Int J Syst Evol Microbiol 57:, 2289–2295. [CrossRef][PubMed]
    [Google Scholar]
  34. Fang G., Rocha E., Danchin A.. ( 2005;). How essential are nonessential genes?. Mol Biol Evol 22:, 2147–2156. [CrossRef][PubMed]
    [Google Scholar]
  35. Gao B., Gupta R. S.. ( 2007;). Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis. . BMC Genomics 8:, 86. [CrossRef][PubMed]
    [Google Scholar]
  36. Gao B., Gupta R. S.. ( 2012a;). Microbial systematics in the post-genomics era. . Antonie van Leeuwenhoek 101:, 45–54. [CrossRef][PubMed]
    [Google Scholar]
  37. Gao B., Gupta R. S.. ( 2012b;). Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. . Microbiol Mol Biol Rev 76:, 66–112. [CrossRef][PubMed]
    [Google Scholar]
  38. Gao B., Mohan R., Gupta R. S.. ( 2009;). Phylogenomics and protein signatures elucidating the evolutionary relationships among the Gammaproteobacteria. . Int J Syst Evol Microbiol 59:, 234–247. [CrossRef][PubMed]
    [Google Scholar]
  39. Grant W. D., Larsen H.. ( 1989;). Halobacteriales ord. nov. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB, List no. 31. . Int J Syst Bacteriol 39:, 495–497. [CrossRef]
    [Google Scholar]
  40. Grant W. D., Kamekura M., McGenity T. J., Ventosa A.. ( 2001a;). Class III. Halobacteria class. nov.. In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1, p. 294. Edited by Boone D. R., Castenholz R. W., Garrity G. M... New York:: Springer;.
    [Google Scholar]
  41. Grant W. D., Kamekura M., McGenity T. J., Ventosa A.. ( 2001b;). Order I. Halobacteriales Grant and Larsen 1989b, 495VP (Effective Publication: Grant and Larsen 1989a, 2216). . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1, pp. 294–299. Edited by Boone D. R., Castenholz R. W., Garrity G. M... New York:: Springer;.
    [Google Scholar]
  42. Grant W. D., Kamekura M., McGenity T. J., Ventosa A.. ( 2001c;). Family I. Halobacteriaceae Gibbons 1974a, 269AL. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1, pp. 299–301. Edited by Boone D. R., Castenholz R. W., Garrity G. M... New York:: Springer;.
    [Google Scholar]
  43. Grant W. D., Kamekura M., McGenity T. J., Ventosa A.. ( 2002;). Halobacteria class. nov. In Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Validation List no. 85. . Int J Syst Evol Microbiol 52:, 685–690. [CrossRef][PubMed]
    [Google Scholar]
  44. Griffiths E., Gupta R. S.. ( 2004;). Signature sequences in diverse proteins provide evidence for the late divergence of the order Aquificales. . Int Microbiol 7:, 41–52.[PubMed]
    [Google Scholar]
  45. Guan Z., Naparstek S., Calo D., Eichler J.. ( 2012;). Protein glycosylation as an adaptive response in Archaea: growth at different salt concentrations leads to alterations in Haloferax volcanii S-layer glycoprotein N-glycosylation. . Environ Microbiol 14:, 743–753. [CrossRef][PubMed]
    [Google Scholar]
  46. Gupta R. S.. ( 1998;). Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. . Microbiol Mol Biol Rev 62:, 1435–1491.[PubMed]
    [Google Scholar]
  47. Gupta R. S.. ( 2010;). Applications of conserved indels for understanding microbial phylogeny. . In Molecular Phylogeny of Microorganisms, pp. 135–150. Edited by Oren A., Papke R. T... Wymondham, UK:: Caister Academic Press;.
    [Google Scholar]
  48. Gupta R. S.. ( 2014;). Identification of conserved indels that are useful for classification and evolutionary studies. . Methods Microbiol 41:, 153–182. [CrossRef]
    [Google Scholar]
  49. Gupta R. S., Griffiths E.. ( 2002;). Critical issues in bacterial phylogeny. . Theor Popul Biol 61:, 423–434. [CrossRef][PubMed]
    [Google Scholar]
  50. Gupta R. S., Mathews D. W.. ( 2010;). Signature proteins for the major clades of cyanobacteria. . BMC Evol Biol 10:, 24. [CrossRef][PubMed]
    [Google Scholar]
  51. Gupta R. S., Mok A.. ( 2007;). Phylogenomics and signature proteins for the alpha Proteobacteria and its main groups. . BMC Microbiol 7:, 106. [CrossRef][PubMed]
    [Google Scholar]
  52. Gupta R. S., Shami A.. ( 2011;). Molecular signatures for the Crenarchaeota and the Thaumarchaeota. . Antonie van Leeuwenhoek 99:, 133–157. [CrossRef][PubMed]
    [Google Scholar]
  53. Gupta R. S., Pereira M., Chandrasekera C., Johari V.. ( 2003;). Molecular signatures in protein sequences that are characteristic of cyanobacteria and plastid homologues. . Int J Syst Evol Microbiol 53:, 1833–1842. [CrossRef][PubMed]
    [Google Scholar]
  54. Gutiérrez M. C., Castillo A. M., Kamekura M., Xue Y., Ma Y., Cowan D. A., Jones B. E., Grant W. D., Ventosa A.. ( 2007;). Halopiger xanaduensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from saline Lake Shangmatala in Inner Mongolia, China. . Int J Syst Evol Microbiol 57:, 1402–1407. [CrossRef][PubMed]
    [Google Scholar]
  55. Harris J. K., Kelley S. T., Spiegelman G. B., Pace N. R.. ( 2003;). The genetic core of the universal ancestor. . Genome Res 13:, 407–412. [CrossRef][PubMed]
    [Google Scholar]
  56. Harrison F. C., Kennedy M. L.. ( 1922;) The red discoloration of cured codfish. . Trans R Soc Can 16:, 101–152.
    [Google Scholar]
  57. Hartman A. L., Norais C. Ã., Badger J. H., Delmas S., Haldenby S., Madupu R., Robinson J., Khouri H., Ren Q. et al. ( 2010;). The complete genome sequence of Haloferax volcanii DS2, a model archaeon. . PLoS ONE 5:, e9605. [CrossRef][PubMed]
    [Google Scholar]
  58. Hezayen F. F., Tindall B. J., Steinbüchel A., Rehm B. H.. ( 2002;). Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov.. Int J Syst Evol Microbiol 52:, 2271–2280. [CrossRef][PubMed]
    [Google Scholar]
  59. Inoue K., Itoh T., Ohkuma M., Kogure K.. ( 2011;). Halomarina oriensis gen. nov., sp. nov., a halophilic archaeon isolated from a seawater aquarium. . Int J Syst Evol Microbiol 61:, 942–946. [CrossRef][PubMed]
    [Google Scholar]
  60. Itoh T., Yamaguchi T., Zhou P., Takashina T.. ( 2005;). Natronolimnobius baerhuensis gen. nov., sp. nov. and Natronolimnobius innermongolicus sp. nov., novel haloalkaliphilic archaea isolated from soda lakes in Inner Mongolia, China. . Extremophiles 9:, 111–116. [CrossRef][PubMed]
    [Google Scholar]
  61. Jenkins C., Fuerst J. A.. ( 2001;). Phylogenetic analysis of evolutionary relationships of the planctomycete division of the domain bacteria based on amino acid sequences of elongation factor Tu. . J Mol Evol 52:, 405–418.[PubMed]
    [Google Scholar]
  62. Jones D. T., Taylor W. R., Thornton J. M.. ( 1992;). The rapid generation of mutation data matrices from protein sequences. . Comput Appl Biosci 8:, 275–282.[PubMed]
    [Google Scholar]
  63. Kamekura M., Dyall-Smith M. L.. ( 1995;). Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba. . J Gen Appl Microbiol 41:, 333–350. [CrossRef]
    [Google Scholar]
  64. Kamekura M., Kates M.. ( 1999;). Structural diversity of membrane lipids in members of Halobacteriaceae. . Biosci Biotechnol Biochem 63:, 969–972. [CrossRef][PubMed]
    [Google Scholar]
  65. Kamekura M., Dyall-Smith M. L., Upasani V., Ventosa A., Kates M.. ( 1997;). Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. . Int J Syst Bacteriol 47:, 853–857. [CrossRef][PubMed]
    [Google Scholar]
  66. Kates M.. ( 1996;). Structural analysis of phospholipids and glycolipids in extremely halophilic archaebacteria. . J Microbiol Methods 25:, 113–128. [CrossRef]
    [Google Scholar]
  67. Krieg N. R.. ( 2001;). Procaryotic domains. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1, pp. 21–25. Edited by Boone D. R., Castenholz R. W., Garrity G. M... New York:: Springer;. [CrossRef]
    [Google Scholar]
  68. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. ( 2007;). Clustal W and Clustal X version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  69. Larsen H., Grant W. D.. ( 1989;). Genus I. Halobacterium. . In Bergey’s Manual of Systematic Bacteriology, vol. 3, pp. 2219–2224. Edited by Staley J. T., Bryant D. W., Pfenning N., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  70. Lerat E., Daubin V., Ochman H., Moran N. A.. ( 2005;). Evolutionary origins of genomic repertoires in bacteria. . PLoS Biol 3:, e130. [CrossRef][PubMed]
    [Google Scholar]
  71. LPSN ( 2014;). List of Prokaryotic Names with Standing in Nomenclature. . http://www.bacterio.net/
  72. Makhdoumi-Kakhki A., Amoozegar M. A., Bagheri M., Ramezani M., Ventosa A.. ( 2012a;). Haloarchaeobius iranensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from a saline lake. . Int J Syst Evol Microbiol 62:, 1021–1026. [CrossRef][PubMed]
    [Google Scholar]
  73. Makhdoumi-Kakhki A., Amoozegar M. A., Ventosa A.. ( 2012b;). Halovenus aranensis gen. nov., sp. nov., an extremely halophilic archaeon from Aran-Bidgol salt lake. . Int J Syst Evol Microbiol 62:, 1331–1336. [CrossRef][PubMed]
    [Google Scholar]
  74. McGenity T. J., Grant W. D.. ( 1995;). Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb., nov., and Halorubrum lacusprofundi comb. nov.. Syst Appl Microbiol 18:, 237–243. [CrossRef]
    [Google Scholar]
  75. McGenity T. J., Oren A.. ( 2012;). Life in saline environments. . In Life at Extremes. Environments, Organisms, and Strategies for Survival, pp. 402–437. Edited by Bell E. M... Wallingford, UK:: CABI International;. [CrossRef]
    [Google Scholar]
  76. McGenity T. J., Gemmell R. T., Grant W. D.. ( 1998;). Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov.. Int J Syst Bacteriol 48:, 1187–1196. [CrossRef][PubMed]
    [Google Scholar]
  77. Minegishi H., Kamekura M., Itoh T., Echigo A., Usami R., Hashimoto T.. ( 2010a;). Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B′ (rpoB′) gene. . Int J Syst Evol Microbiol 60:, 2398–2408. [CrossRef][PubMed]
    [Google Scholar]
  78. Minegishi H., Echigo A., Nagaoka S., Kamekura M., Usami R.. ( 2010b;). Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. . Int J Syst Evol Microbiol 60:, 2513–2516. [CrossRef][PubMed]
    [Google Scholar]
  79. Minegishi H., Kamekura M., Kitajima-Ihara T., Nakasone K., Echigo A., Shimane Y., Usami R., Itoh T., Ihara K.. ( 2012;). Gene orders in the upstream of 16S rRNA genes divide genera of the family Halobacteriaceae into two groups. . Int J Syst Evol Microbiol 62:, 188–195. [CrossRef][PubMed]
    [Google Scholar]
  80. Montalvo-Rodríguez R., Vreeland R. H., Oren A., Kessel M., Betancourt C., López-Garriga J.. ( 1998;). Halogeometricum borinquense gen. nov., sp. nov., a novel halophilic archaeon from Puerto Rico. . Int J Syst Bacteriol 48:, 1305–1312. [CrossRef][PubMed]
    [Google Scholar]
  81. Mou Y. Z., Qiu X. X., Zhao M. L., Cui H. L., Oh D., Dyall-Smith M. L.. ( 2012;). Halohasta litorea gen. nov. sp. nov., and Halohasta litchfieldiae sp. nov., isolated from the Daliang aquaculture farm, China and from Deep Lake, Antarctica, respectively. . Extremophiles 16:, 895–901. [CrossRef][PubMed]
    [Google Scholar]
  82. Mylvaganam S., Dennis P. P.. ( 1992;). Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui. . Genetics 130:, 399–410.[PubMed]
    [Google Scholar]
  83. Naushad H. S., Lee B., Gupta R. S.. ( 2014;). Conserved signature indels and signature proteins as novel tools for understanding microbial phylogeny and systematics: identification of molecular signatures that are specific for the phytopathogenic genera Dickeya, Pectobacterium and Brenneria. . Int J Syst Evol Microbiol 64:, 366–383. [CrossRef][PubMed]
    [Google Scholar]
  84. NCBI ( 2014;). Completed Microbial Genomes. . http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/micr.html.
  85. Nei M., Kumar S.. ( 2000;). Molecular Evolution and Phylogenetics. New York:: Oxford University Press;.
    [Google Scholar]
  86. Ng W. V., Kennedy S. P., Mahairas G. G., Berquist B., Pan M., Shukla H. D., Lasky S. R., Baliga N. S., Thorsson V. et al. ( 2000;). Genome sequence of Halobacterium species NRC-1. . Proc Natl Acad Sci U S A 97:, 12176–12181. [CrossRef][PubMed]
    [Google Scholar]
  87. Niemetz R., Kärcher U., Kandler O., Tindall B. J., König H.. ( 1997;). The cell wall polymer of the extremely halophilic archaeon Natronococcus occultus. . Eur J Biochem 249:, 905–911. [CrossRef][PubMed]
    [Google Scholar]
  88. Oren A.. ( 2006;). The order Halobacteriales. . In The Prokaryotes. A Handbook on the Biology of Bacteria, , 3rd edn., vol. 1, pp. 113–164. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York:: Springer;.
    [Google Scholar]
  89. Oren A.. ( 2012;). Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematics. . Int J Syst Evol Microbiol 62:, 263–271. [CrossRef][PubMed]
    [Google Scholar]
  90. Oren A., Ventosa A.. ( 2013;). Subcommittee on the taxonomy of Halobacteriaceae and Subcommittee on the taxonomy of Halomonadaceae: minutes of the joint open meeting, 24 June 2013, Storrs, Connecticut, USA. . Int J Syst Evol Microbiol 63:, 3540–3544. [CrossRef][PubMed]
    [Google Scholar]
  91. Oren A., Gurevich P., Gemmell R. T., Teske A.. ( 1995;). Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea. . Int J Syst Bacteriol 45:, 747–754. [CrossRef][PubMed]
    [Google Scholar]
  92. Oren A., Elevi R., Watanabe S., Ihara K., Corcelli A.. ( 2002;). Halomicrobium mukohataei gen. nov., comb. nov., and emended description of Halomicrobium mukohataei. . Int J Syst Evol Microbiol 52:, 1831–1835. [CrossRef][PubMed]
    [Google Scholar]
  93. Papke R. T., White E., Reddy P., Weigel G., Kamekura M., Minegishi H., Usami R., Ventosa A.. ( 2011;). A multilocus sequence analysis approach to the phylogeny and taxonomy of the Halobacteriales. . Int J Syst Evol Microbiol 61:, 2984–2995. [CrossRef][PubMed]
    [Google Scholar]
  94. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F. O.. ( 2013;). The silva ribosomal RNA gene database project: improved data processing and web-based tools. . Nucleic Acids Res 41: (Database issue), D590–D596. [CrossRef][PubMed]
    [Google Scholar]
  95. Savage K. N., Krumholz L. R., Oren A., Elshahed M. S.. ( 2007;). Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. . Int J Syst Evol Microbiol 57:, 19–24. [CrossRef][PubMed]
    [Google Scholar]
  96. Savage K. N., Krumholz L. R., Oren A., Elshahed M. S.. ( 2008;). Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon from a low-salt, sulfide-rich spring. . Int J Syst Evol Microbiol 58:, 856–860. [CrossRef][PubMed]
    [Google Scholar]
  97. Schoeffler A. J., May A. P., Berger J. M.. ( 2010;). A domain insertion in Escherichia coli GyrB adopts a novel fold that plays a critical role in gyrase function. . Nucleic Acids Res 38:, 7830–7844. [CrossRef][PubMed]
    [Google Scholar]
  98. Schoop G.. ( 1935;). Halococcus litoralis, ein obligat halphiler Farbstoffbildner. . Dtsch Tierarztl Wochenschr 43:, 817–820 (in German).
    [Google Scholar]
  99. Segata N., Börnigen D., Morgan X. C., Huttenhower C.. ( 2013;). PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. . Nat Commun 4:, 2304. [CrossRef][PubMed]
    [Google Scholar]
  100. Shimane Y., Hatada Y., Minegishi H., Mizuki T., Echigo A., Miyazaki M., Ohta Y., Usami R., Grant W. D., Horikoshi K.. ( 2010;). Natronoarchaeum mannanilyticum gen. nov., sp. nov., an aerobic, extremely halophilic archaeon isolated from commercial salt. . Int J Syst Evol Microbiol 60:, 2529–2534. [CrossRef][PubMed]
    [Google Scholar]
  101. Shimane Y., Hatada Y., Minegishi H., Echigo A., Nagaoka S., Miyazaki M., Ohta Y., Maruyama T., Usami R. et al. ( 2011;). Salarchaeum japonicum gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea isolated from commercial salt. . Int J Syst Evol Microbiol 61:, 2266–2270. [CrossRef][PubMed]
    [Google Scholar]
  102. Siddaramappa S., Challacombe J. F., Decastro R. E., Pfeiffer F., Sastre D. E., Giménez M. I., Paggi R. A., Detter J. C., Davenport K. W. et al. ( 2012;). A comparative genomics perspective on the genetic content of the alkaliphilic haloarchaeon Natrialba magadii ATCC 43099T. . BMC Genomics 13:, 165. [CrossRef][PubMed]
    [Google Scholar]
  103. Singh B., Gupta R. S.. ( 2009;). Conserved inserts in the Hsp60 (GroEL) and Hsp70 (DnaK) proteins are essential for cellular growth. . Mol Genet Genomics 281:, 361–373. [CrossRef][PubMed]
    [Google Scholar]
  104. Skerman V. B. D., McGowan V., Sneath P. H. A.. ( 1980;). Approved lists of bacterial names. . Int J Syst Bacteriol 30:, 225–420. [CrossRef]
    [Google Scholar]
  105. Song H. S., Cha I. T., Yim K. J., Lee H. W., Hyun D. W., Lee S. J., Rhee S. K., Kim K. N., Kim D. et al. ( 2014;). Halapricum salinum gen. nov., sp. nov., an extremely halophilic archaeon isolated from non-purified solar salt. . Antonie van Leeuwenhoek 105:, 979–986. [CrossRef][PubMed]
    [Google Scholar]
  106. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  107. Tindall B. J.. ( 1992;). The family Halobacteriaceae. . In The Prokaryotes. A Handbook on the Biology of Bacteria, , 2nd edn., pp. 768–808. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H... New York:: Springer;.
    [Google Scholar]
  108. Tindall B. J., Ross H. N. M., Grant W. D.. ( 1984;). Natronobacterium gen. nov. and Natronococcus gen. nov., two new genera of haloalkaliphilic archaebacteria. . Syst Appl Microbiol 5:, 41–57. [CrossRef]
    [Google Scholar]
  109. Torreblanca M., Rodriguez-Valera F., Juez G., Ventosa A., Kamekura M., Kates M.. ( 1986;). Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. . Syst Appl Microbiol 8:, 89–99. [CrossRef]
    [Google Scholar]
  110. Ventosa A., Nieto J. J., Oren A.. ( 1998;). Biology of moderately halophilic aerobic bacteria. . Microbiol Mol Biol Rev 62:, 504–544.[PubMed]
    [Google Scholar]
  111. Ventosa A., Gutiérrez M. C., Kamekura M., Dyall-Smith M. L.. ( 1999;). Proposal to transfer Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov.. Int J Syst Bacteriol 49:, 131–136. [CrossRef][PubMed]
    [Google Scholar]
  112. Vreeland R. H., Straight S., Krammes J., Dougherty K., Rosenzweig W. D., Kamekura M.. ( 2002;). Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. . Extremophiles 6:, 445–452. [CrossRef][PubMed]
    [Google Scholar]
  113. Wainø M., Tindall B. J., Ingvorsen K.. ( 2000;). Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. . Int J Syst Evol Microbiol 50:, 183–190. [CrossRef][PubMed]
    [Google Scholar]
  114. Walsh D. A., Bapteste E., Kamekura M., Doolittle W. F.. ( 2004;). Evolution of the RNA polymerase B′ subunit gene (rpoB′) in Halobacteriales: a complementary molecular marker to the SSU rRNA gene. . Mol Biol Evol 21:, 2340–2351. [CrossRef][PubMed]
    [Google Scholar]
  115. Whelan S., Goldman N.. ( 2001;). A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. . Mol Biol Evol 18:, 691–699. [CrossRef][PubMed]
    [Google Scholar]
  116. Williams K. P., Gillespie J. J., Sobral B. W., Nordberg E. K., Snyder E. E., Shallom J. M., Dickerman A. W.. ( 2010;). Phylogeny of gammaproteobacteria. . J Bacteriol 192:, 2305–2314. [CrossRef][PubMed]
    [Google Scholar]
  117. Wu D., Hugenholtz P., Mavromatis K., Pukall R., Dalin E., Ivanova N. N., Kunin V., Goodwin L., Wu M. et al. ( 2009;). A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. . Nature 462:, 1056–1060. [CrossRef][PubMed]
    [Google Scholar]
  118. Xu Y., Zhou P., Tian X.. ( 1999;). Characterization of two novel haloalkaliphilic archaea Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov.. Int J Syst Bacteriol 49:, 261–266. [CrossRef][PubMed]
    [Google Scholar]
  119. Xue Y., Fan H., Ventosa A., Grant W. D., Jones B. E., Cowan D. A., Ma Y.. ( 2005;). Halalkalicoccus tibetensis gen. nov., sp. nov., representing a novel genus of haloalkaliphilic archaea. . Int J Syst Evol Microbiol 55:, 2501–2505. [CrossRef][PubMed]
    [Google Scholar]
  120. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31:, 241–250. [CrossRef][PubMed]
    [Google Scholar]
  121. Youssef N. H., Savage-Ashlock K. N., McCully A. L., Luedtke B., Shaw E. I., Hoff W. D., Elshahed M. S.. ( 2014;). Trehalose/2-sulfotrehalose biosynthesis and glycine-betaine uptake are widely spread mechanisms for osmoadaptation in the Halobacteriales. . ISME J 8:, 636–649. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.070136-0
Loading
/content/journal/ijsem/10.1099/ijs.0.070136-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error