1887

Abstract

The genus Anagnostidis & Komárek (1988) was described from a set of strains identified as ‘LPP-group B’. The morphology within this group is not particularly informative and underestimates the group’s genetic diversity. In the present study, two new pseudanabaenacean genera related to morphotypes, gen. nov. and gen. nov., are described under the provisions of the International Code of Nomenclature for Algae, Fungi and Plants, based on a polyphasic approach. gen. nov. (type species sp. nov.) has sheaths and trichomes with slight gliding motility, which distinguish this genus from gen. nov. (type species sp. nov.), which possesses trichomes arranged in an ornate (interwoven) pattern. 16S rRNA gene sequences of strains of and exhibited low identity to each other (≤91.6 %) and to other sequences from known pseudanabaenacean genera (≤94.3 and 93.7 %, respectively). In a phylogenetic reconstruction, six sequences from strains of and four from strains of formed two separate and robust clades (99 % bootstrap value), with the genera and , respectively, as the closest related groups. 16S–23S rRNA intergenic spacer sequences and secondary structures of strains of and did not correspond to any previous descriptions. The strains of and were able to survive and produce biomass at a range of pH (pH 4–11) and were also able to alter the culture medium to pH values ranging from pH 8.4 to 9.9. These data indicate that cyanobacterial communities in underexplored environments, such as the Pantanal wetlands, are promising sources of novel taxa.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.070110-0
2015-01-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/1/298.html?itemId=/content/journal/ijsem/10.1099/ijs.0.070110-0&mimeType=html&fmt=ahah

References

  1. Abed R. M. M. , Garcia-Pichel F. , Hernández-Mariné M. . ( 2002; ). Polyphasic characterization of benthic, moderately halophilic, moderately thermophilic cyanobacteria with very thin trichomes and the proposal of Halomicronema excentricum gen. nov., sp. nov.. Arch Microbiol 177:, 361–370. [CrossRef] [PubMed]
    [Google Scholar]
  2. Albertano P. , Kováčik L. . ( 1994; ). Is the genus Leptolyngbya an homogeneous taxon?. Algol Stud 75:, 37–51.
    [Google Scholar]
  3. Almer B. , Dickson W. , Ekström C. , Hörnström E. , Miller U. . ( 1974; ). Effects of acidification on Swedish lakes. . Ambio 3:, 30–36.
    [Google Scholar]
  4. Andreote A. P. D. , Vaz M. G. M. V. , Genuário D. B. , Barbiero L. , Rezende-Filho A. T. , Fiore M. F. . ( 2014; ). Nonheterocytous cyanobacteria from Brazilian saline-alkaline lakes. . J Phycol 50:, 675–684. [CrossRef]
    [Google Scholar]
  5. Casamatta D. A. , Johansen J. R. , Vis M. L. , Broadwater S. T. . ( 2005; ). Molecular and ultrastructural characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). . J Phycol 41:, 421–438. [CrossRef]
    [Google Scholar]
  6. Castenholz R. W. , Waterbury J. B. . ( 1989; ). Group 1. Cyanobacteria (Preface). . In Bergey’s Manual of Systematic Bacteriology, vol. 3, pp. 1710–1728. Edited by Staley J. T. , Bryant M. P. , Pfennig N. , Holt J. G. . . Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  7. Chatchawan T. , Komárek J. , Strunecký O. , Šmarda J. , Peerapornpisal Y. . ( 2012; ). Oxynema, a new genus separated from the genus Phormidium (Cyanophyta). . Cryptogam Algol 33:, 41–59. [CrossRef]
    [Google Scholar]
  8. Dadheech P. K. , Mahmoud H. , Kotut K. , Krienitz L. . ( 2012; ). Haloleptolyngbya alcalis gen. et sp. nov., a new filamentous cyanobacterium from the soda lake Nakuru, Kenya. . Hydrobiologia 691:, 269–283. [CrossRef]
    [Google Scholar]
  9. Ewing B. , Green P. . ( 1998; ). Base-calling of automated sequencer traces using phred. II. Error probabilities. . Genome Res 8:, 186–194. [CrossRef] [PubMed]
    [Google Scholar]
  10. Ewing B. , Hillier L. , Wendl M. C. , Green P. . ( 1998; ). Base-calling of automated sequencer traces using phred. I. Accuracy assessment. . Genome Res 8:, 175–185. [CrossRef] [PubMed]
    [Google Scholar]
  11. Fiore M. F. , Moon D. H. , Tsai S. M. , Lee H. , Trevors J. T. . ( 2000; ). Miniprep DNA isolation from unicellular and filamentous cyanobacteria. . J Microbiol Methods 39:, 159–169. [CrossRef] [PubMed]
    [Google Scholar]
  12. Fox G. E. , Wisotzkey J. D. , Jurtshuk P. Jr . ( 1992; ). How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. . Int J Syst Bacteriol 42:, 166–170. [CrossRef] [PubMed]
    [Google Scholar]
  13. Genuário D. B. , Corrêa D. M. , Komárek J. , Fiore M. F. . ( 2013; ). Characterization of freshwater benthic biofilm-forming Hydrocoryne (Cyanobacteria) isolates from Antarctica. . J Phycol 49:, 1142–1153. [CrossRef]
    [Google Scholar]
  14. Gordon D. , Abajian C. , Green P. . ( 1998; ). Consed: a graphical tool for sequence finishing. . Genome Res 8:, 195–202. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hašler P. , Dvořák P. , Johansen J. R. , Kitner M. , Ondřej V. , Poulíčková A. . ( 2012; ). Morphological and molecular study of epipelic filamentous genera Phormidium, Microcoleus and Geitlerinema (Oscillatoriales, Cyanophyta/Cyanobacteria). . Fottea 12:, 341–356.[CrossRef]
    [Google Scholar]
  16. Hauer T. , Bohunická M. , Mühlsteinová M. . ( 2013; ). Calochaete gen. nov. (Cyanobacteria, Nostocales), a new cyanobacterial type from the “páramo” zone in Costa Rica. . Phytotaxa 109:, 36–44. [CrossRef]
    [Google Scholar]
  17. Hoffmann L. , Komárek J. , Kaštovský J. . ( 2005; ). System of cyanoprokaryotes (cyanobacteria) – state in 2004. . Algol Stud 117:, 95–115. [CrossRef]
    [Google Scholar]
  18. Hrouzek P. , Lukesova A. , Mares J. , Ventura S. . ( 2013; ). Description of the cyanobacterial genus Desmonostoc gen. nov. including D. muscorum comb. nov. as a distinct, phylogenetically coherent taxon related to the genus Nostoc . . Fottea 13:, 201–213.[CrossRef]
    [Google Scholar]
  19. Huang J. J. , Kolodny N. H. , Redfearn J. T. , Allen M. M. . ( 2002; ). The acid stress response of the cyanobacterium Synechocystis sp. strain PCC 6308. . Arch Microbiol 177:, 486–493. [CrossRef] [PubMed]
    [Google Scholar]
  20. Johansen J. R. , Casamatta D. A. . ( 2005; ). Recognizing cyanobacterial diversity through adoption of a new species paradigm. . Algol Stud 117:, 71–93. [CrossRef]
    [Google Scholar]
  21. Johansen J. R. , Kovácik L. , Casamatta D. A. , Fučiková K. , Kaštovský J. . ( 2011; ). Utility of 16S–23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). . Nova Hedwig 92:, 283–302. [CrossRef]
    [Google Scholar]
  22. Komárek J. . ( 2007; ). Phenotype diversity of the cyanobacterial genus Leptolyngbya in the maritime Antarctic. . Pol Polar Res 28:, 211–231.
    [Google Scholar]
  23. Komárek J. . ( 2010; ). Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). . Hydrobiologia 639:, 245–259. [CrossRef]
    [Google Scholar]
  24. Komárek J. , Anagnostidis K. . ( 1989; ). Modern approach to the classification system of cyanophytes 4 – Nostocales. . Algol Stud 56:, 247–354.
    [Google Scholar]
  25. Komárek J. , Anagnostidis K. . ( 2005; ). Cyanoprokaryota. 2. Teil: Oscillatoriales (Süßwasserflora von Mitteleuropa, vol. 19/2). Edited by Büdel B. , Gärtner G. , Krienitz L. , Schagerl M. . . Heidelberg:: Elsevier;.
    [Google Scholar]
  26. Komárek J. , Hauer T. . ( 2013; ). CyanoDB.cz – The on-line database of cyanobacterial genera. . University of South Bohemia & Institute of Botany AS CR:. http://www.cyanodb.cz
  27. Komárek J. , Kaštovský J. . ( 2003; ). Coincidences of structural and molecular characters in evolutionary lines of cyanobacteria. . Algol Stud 109:, 305–325. [CrossRef]
    [Google Scholar]
  28. Komárek J. , Kaštovský J. , Ventura S. , Turicchia S. , Šmarda J. . ( 2009; ). The cyanobacterial genus Phormidesmis . . Algol Stud 129:, 41–59. [CrossRef]
    [Google Scholar]
  29. Komárková J. , Zapamelová E. , Komárek J. . ( 2013; ). Chakia (cyanobacteria), a new heterocytous genus from Belizean marshes identified on the basis of the 16S rRNA gene. . Fottea 13:, 227–233.[CrossRef]
    [Google Scholar]
  30. Kwiatkowski R. E. , Roff J. C. . ( 1976; ). Effects of acidity on the phytoplankton and primary productivity of selected northern Ontario lakes. . Can J Bot 54:, 2546–2561. [CrossRef]
    [Google Scholar]
  31. Lamprinou V. , Hernández-Mariné M. , Canals T. , Kormas K. , Economou-Amilli A. , Pantazidou A. . ( 2011; ). Morphology and molecular evaluation of Iphinoe spelaeobios gen. nov., sp. nov. and Loriellopsis cavernicola gen. nov., sp. nov., two stigonematalean cyanobacteria from Greek and Spanish caves. . Int J Syst Evol Microbiol 61:, 2907–2915. [CrossRef] [PubMed]
    [Google Scholar]
  32. Lamprinou V. , Skaraki K. , Kotoulas G. , Economou-Amilli A. , Pantazidou A. . ( 2012; ). Toxopsis calypsus gen. nov., sp. nov. (Cyanobacteria, Nostocales) from cave ‘Francthi’, Peloponnese, Greece: a morphological and molecular evaluation. . Int J Syst Evol Microbiol 62:, 2870–2877. [CrossRef] [PubMed]
    [Google Scholar]
  33. Møgelhøj M. K. , Hansen P. J. , Henriksen P. , Lundholm N. . ( 2006; ). High pH and not allelopathy may be responsible for negative effects of Nodularia spumigena on other algae. . Aquat Microb Ecol 43:, 43–54. [CrossRef]
    [Google Scholar]
  34. Perkerson R. B. III , Johansen J. R. , Kovácik L. , Brand J. , Kaštovský J. , Casamatta D. A. . ( 2011; ). A unique pseudanabaenalean (Cyanobacteria) genus Nodosolinea gen. nov. based on morphological and molecular data. . J Phycol 47:, 1397–1412. [CrossRef]
    [Google Scholar]
  35. Pikuta E. V. , Hoover R. B. , Tang J. . ( 2007; ). Microbial extremophiles at the limits of life. . Crit Rev Microbiol 33:, 183–209. [CrossRef] [PubMed]
    [Google Scholar]
  36. R Core Team ( 2012; ). R: a language and environment for statistical computing. . Vienna: R Foundation for Statistical Computing. http://www.R-project.org/
  37. Řeháková K. , Johansen J. R. , Casamatta D. , Xuesong L. , Vincent J. . ( 2007; ). Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. nov.. Phycologia 46:, 481–502. [CrossRef]
    [Google Scholar]
  38. Rippka R. , Deruelles J. , Waterbury J. B. , Herdman M. , Stanier R. Y. . ( 1979; ). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. . J Gen Microbiol 111:, 1–61. [CrossRef]
    [Google Scholar]
  39. Roeselers G. , Norris T. B. , Castenholz R. W. , Rysgaard S. , Glud R. N. , Kühl M. , Muyzer G. . ( 2007; ). Diversity of phototrophic bacteria in microbial mats from Arctic hot springs (Greenland). . Environ Microbiol 9:, 26–38. [CrossRef] [PubMed]
    [Google Scholar]
  40. Santos K. R. S. , Sant’Anna C. L. . ( 2010; ). Cianobactérias de diferentes tipos de lagoas (“salina”, “salitrada” e “baía”) representativas do Pantanal da Nhecolândia, MS, Brasil. . Braz J Bot 33:, 61–83 (in Portuguese).
    [Google Scholar]
  41. Santos K. R. S. , Jacinavicius F. R. , Sant’Anna C. L. . ( 2011; ). Effects of the pH on growth and morphology of Anabaenopsis elenkinii Miller (Cyanobacteria) isolated from the alkaline shallow lake of the Brazilian Pantanal. . Fottea 11:, 119–126.[CrossRef]
    [Google Scholar]
  42. Schattner P. , Brooks A. N. , Lowe T. M. . ( 2005; ). The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. . Nucleic Acids Res 33: (Web Server issue), W686–W689. [CrossRef] [PubMed]
    [Google Scholar]
  43. Siegesmund M. A. , Johansen J. R. , Karsten U. , Friedl T. . ( 2008; ). Coleofasciculus gen. nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. . J Phycol 44:, 1572–1585. [CrossRef]
    [Google Scholar]
  44. Silva C. S. P. , Genuário D. B. , Vaz M. G. M. V. , Fiore M. F. . ( 2014; ). Phylogeny of culturable cyanobacteria from Brazilian mangroves. . Syst Appl Microbiol 37:, 100–112. [CrossRef] [PubMed]
    [Google Scholar]
  45. Steinberg C. E. W. , Schäfer H. , Beisker W. . ( 1998; ). Do acid-tolerant cyanobacteria exist?. Acta Hydrochim Hydrobiol 26:, 13–19. [CrossRef]
    [Google Scholar]
  46. Strunecký O. , Elster J. , Komárek J. . ( 2011; ). Taxonomic revision of the freshwater cyanobacterium “Phormidium murrayi”  =  Wilmottia murrayi . . Fottea 11:, 57–71.[CrossRef]
    [Google Scholar]
  47. Summerfield T. C. , Sherman L. A. . ( 2008; ). Global transcriptional response of the alkali-tolerant cyanobacterium Synechocystis sp. strain PCC 6803 to a pH 10 environment. . Appl Environ Microbiol 74:, 5276–5284. [CrossRef] [PubMed]
    [Google Scholar]
  48. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  49. Taton A. , Grubisic S. , Brambilla E. , De Wit R. , Wilmotte A. . ( 2003; ). Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. . Appl Environ Microbiol 69:, 5157–5169. [CrossRef] [PubMed]
    [Google Scholar]
  50. Taton A. , Grubisic S. , Ertz D. , Hodgson D. A. , Piccardi R. , Biondi N. , Tredici M. R. , Mainini M. , Losi D. . & other authors ( 2006; ). Polyphasic study of Antarctic cyanobacterial strains. . J Phycol 42:, 1257–1270. [CrossRef]
    [Google Scholar]
  51. Taton A. , Wilmotte A. , Šmarda J. , Elster J. , Komárek J. . ( 2011; ). Plectolyngbya hodgsonni: a novel filamentous cyanobacterium from Antarctic lakes. . Polar Biol 34:, 181–191. [CrossRef]
    [Google Scholar]
  52. Turicchia S. , Ventura S. , Komárková J. , Komárek J. . ( 2009; ). Taxonomic evaluation of cyanobacterial microflora from alkaline marshes of northern Belize. 2. Diversity of oscillatorialean genera. . Nova Hedwig 89:, 165–200. [CrossRef]
    [Google Scholar]
  53. Valenzuela-Encinas C. , Neria-González I. , Alcántara-Hernández R. J. , Estrada-Alvarado I. , Zavala-Díaz de la Serna F. J. , Dendooven L. , Marsch R. . ( 2009; ). Changes in the bacterial populations of the highly alkaline saline soil of the former lake Texcoco (Mexico) following flooding. . Extremophiles 13:, 609–621. [CrossRef] [PubMed]
    [Google Scholar]
  54. Willame R. , Boutte C. , Grubisic S. , Wilmotte A. , Komárek J. , Hoffmann L. . ( 2006; ). Morphological and molecular characterisation of planktonic cyanobacteria from Belgium and Luxembourg. . J Phycol 42:, 1312–1332. [CrossRef]
    [Google Scholar]
  55. Zammit G. , Billi D. , Albertano P. . ( 2012; ). The subaerophytic cyanobacterium Oculatella subterranea (Oscillatoriales, Cyanophyceae) gen. et sp. nov.: a cytomorphological and molecular description. . Eur J Phycol 47:, 341–354. [CrossRef]
    [Google Scholar]
  56. Zuker M. . ( 2003; ). Mfold web server for nucleic acid folding and hybridization prediction. . Nucleic Acids Res 31:, 3406–3415. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.070110-0
Loading
/content/journal/ijsem/10.1099/ijs.0.070110-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error