1887

Abstract

is a common and well-studied genus of cyanobacteria and, according to molecular phylogeny, is a polyphyletic group. Therefore, revisions of this genus are urged in an attempt to clarify its taxonomy. Novel strains isolated from underexplored environments and assigned morphologically to the genus are not genetically related to the ‘true ’ group. In this study, four strains isolated from biofilms collected in Antarctica and five strains originated from Brazilian mangroves were evaluated. Despite their morphological similarities to other morphotypes of , these nine strains differed from other morphotypes in ecological, physiological and genetic aspects. Based on the phylogeny of the 16S rRNA gene, the Antarctic sequences were grouped together with the sequences of the Brazilian mangrove isolates and sp. Mollenhauer 1 : 1-067 in a well-supported cluster (74 % bootstrap value, maximum-likelihood). This novel cluster was separated phylogenetically from the ‘true ’ clade and from the clades of the morphologically similar genera and . The 16S rRNA gene sequences generated in this study exhibited 96 % similarity to sequences from the nostocacean genera mentioned above. Physiologically, these nine strains showed the capacity to grow in a salinity range of 1–10 % NaCl, indicating their tolerance of saline conditions. These results provide support for the description of a new genus, named gen. nov., which is related morphologically to the genera , and . Within this new genus, three novel species were recognized and described based on morphology and internal transcribed spacer secondary structures: sp. nov., sp. nov. and sp. nov., under the provisions of the International Code of Nomenclature for Algae, Fungi and Plants.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.070078-0
2015-02-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/2/663.html?itemId=/content/journal/ijsem/10.1099/ijs.0.070078-0&mimeType=html&fmt=ahah

References

  1. Allen M. M. . ( 1968; ). Simple conditions for growth of unicellular blue-green algae on plates. . J Phycol 4:, 1–4. [CrossRef]
    [Google Scholar]
  2. Andreote A. P. D. , Vaz M. G. M. V. , Genuário D. B. , Barbiero L. , Rezende-Filho A. R. , Fiore M. F. . ( 2014; ). Non-heterocytous cyanobacteria from Brazilian saline-alkaline lakes. . J Phycol 50:, 675–684. [CrossRef]
    [Google Scholar]
  3. Apte S. K. , Fernandes T. A. , Iyer V. , Alahari A. . ( 1997; ). Molecular basis of tolerance to salinity and drought stresses in photosynthetic nitrogen-fixing cyanobacteria. . In Plant Molecular Biology and Biotechnology, pp. 258–268. Edited by Tewari K. K. , Singhal G. S. . . New Delhi:: Narosa Publishing House;.
    [Google Scholar]
  4. Ben-Porath J. , Zehr J. P. . ( 1994; ). Detection and characterization of cyanobacterial nifH genes. . Appl Environ Microbiol 60:, 880–887.[PubMed]
    [Google Scholar]
  5. Berrendero E. , Perona E. , Mateo P. . ( 2011; ). Phenotypic variability and phylogenetic relationships of the genera Tolypothrix and Calothrix (Nostocales, Cyanobacteria) from running water. . Int J Syst Evol Microbiol 61:, 3039–3051.[CrossRef]
    [Google Scholar]
  6. Bolhuis H. , Severin I. , Confurius-Guns V. , Wollenzien U. I. A. , Stal L. J. . ( 2010; ). Horizontal transfer of the nitrogen fixation gene cluster in the cyanobacterium Microcoleus chthonoplastes . . ISME J 4:, 121–130. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bornet E. , Flahault C. . ( 1886; ). Revision des nostocacées hétérocystées contenues dans les principaux herbiers de France. . Ann Sci Nat Bot 7:, 51–129, 177–260 (in French).
    [Google Scholar]
  8. Chatchawan T. , Komárek J. , Strunecký O. , Šmarda J. , Peerapornpisal Y. . ( 2012; ). Oxynema, a new genus separated from the genus Phormidium (Cyanophyta). . Cryptogam Algol 33:, 41–59. [CrossRef]
    [Google Scholar]
  9. Dadheech P. K. , Mahmoud H. , Kotut K. , Krienitz L. . ( 2012; ). Haloleptolyngbya alcalis gen. et sp. nov., a new filamentous cyanobacterium from the soda lake Nakuru, Kenya. . Hydrobiologia 691:, 269–283. [CrossRef]
    [Google Scholar]
  10. Dadheech P. K. , Casamatta D. A. , Casper P. , Krienitz L. . ( 2013; ). Phormidium etoshii sp. nov. (Oscillatoriales, Cyanobacteria) described from the Etosha Pan, Namibia, based on morphological, molecular and ecological features. . Fottea 13:, 235–244.[CrossRef]
    [Google Scholar]
  11. Darriba D. , Taboada G. L. , Doallo R. , Posada D. . ( 2012; ). jModelTest 2: more models, new heuristics and parallel computing. . Nat Methods 9:, 772. [CrossRef] [PubMed]
    [Google Scholar]
  12. Ewing B. , Green P. . ( 1998; ). Base-calling of automated sequencer traces using phred. II. Error probabilities. . Genome Res 8:, 186–194. [CrossRef] [PubMed]
    [Google Scholar]
  13. Ewing B. , Hillier L. , Wendl M. C. , Green P. . ( 1998; ). Base-calling of automated sequencer traces using phred. I. Accuracy assessment. . Genome Res 8:, 175–185. [CrossRef] [PubMed]
    [Google Scholar]
  14. Fiore M. F. , Moon D. H. , Tsai S. M. , Lee H. , Trevors J. T. . ( 2000; ). Miniprep DNA isolation from unicellular and filamentous cyanobacteria. . J Microbiol Methods 39:, 159–169. [CrossRef] [PubMed]
    [Google Scholar]
  15. Flannery W. L. . ( 1956; ). Current status of knowledge of halophilic bacteria. . Bacteriol Rev 20:, 49–66.[PubMed]
    [Google Scholar]
  16. Flechtner V. R. , Boyer S. L. , Johansen J. R. , Denoble M. L. . ( 2002; ). Spirirestis rafaelensis gen. et sp. nov. (Cyanophyceae), a new cyanobacterial genus from arid soils. . Nova Hedwigia 74:, 1–24.[CrossRef]
    [Google Scholar]
  17. Fritsch F. E. . ( 1912; ). Freshwater algae. National Antarctic “Discovery” Expedition 1901–1904. . In British Museum (Natural History) Discovery Expedition, vol. 6, pp. 1–60. London:: British Museum (Natural History);.
    [Google Scholar]
  18. Fumanti B. , Cavacini P. , Alfinito S. . ( 1997; ). Benthic algal mats of some lakes of Inexpressible Island (Northern Victoria Land, Antarctica). . Polar Biol 17:, 25–30. [CrossRef]
    [Google Scholar]
  19. Garcia-Pichel F. , Nübel U. , Muyzer G. . ( 1998; ). The phylogeny of unicellular, extremely halotolerant cyanobacteria. . Arch Microbiol 169:, 469–482. [CrossRef] [PubMed]
    [Google Scholar]
  20. Genuário D. B. , Silva-Stenico M. E. , Welker M. , Beraldo Moraes L. A. , Fiore M. F. . ( 2010; ). Characterization of a microcystin and detection of microcystin synthetase genes from a Brazilian isolate of Nostoc . . Toxicon 55:, 846–854. [CrossRef] [PubMed]
    [Google Scholar]
  21. Genuário D. B. , Corrêa D. M. , Komárek J. , Fiore M. F. . ( 2013; ). Characterization of freshwater benthic biofilm-forming Hydrocoryne (Cyanobacteria) isolates from Antarctica. . J Phycol 49:, 1142–1153. [CrossRef]
    [Google Scholar]
  22. Golubic S. . ( 1980; ). Origins of Life. Dordrecht & Boston:: Reidel;.
    [Google Scholar]
  23. Gordon D. , Abajian C. , Green P. . ( 1998; ). Consed: a graphical tool for sequence finishing. . Genome Res 8:, 195–202. [CrossRef] [PubMed]
    [Google Scholar]
  24. Hagemann M. . ( 2011; ). Molecular biology of cyanobacterial salt acclimation. . FEMS Microbiol Rev 35:, 87–123. [CrossRef] [PubMed]
    [Google Scholar]
  25. Hewson I. , Moisander P. H. , Morrison A. E. , Zehr J. P. . ( 2007; ). Diazotrophic bacterioplankton in a coral reef lagoon: phylogeny, diel nitrogenase expression and response to phosphate enrichment. . ISME J 1:, 78–91. [CrossRef] [PubMed]
    [Google Scholar]
  26. Hoff T. , Frémy P. . ( 1933; ). On myxophyceae living in strong brines. . Recl Trav Bot Neerl 30:, 140–162.
    [Google Scholar]
  27. Hrouzek P. , Ventura S. , Lukesová A. , Mugnai M. A. , Turicchia S. , Komarék J. . ( 2005; ). Diversity of soil Nostoc strain: phylogenetic and phenotypic variability. . Arch Hydrobiol Suppl Algol Stud 159:, 251–264.
    [Google Scholar]
  28. Hrouzek P. , Lukesova A. , Mares J. , Ventura S. . ( 2013; ). Description of the cyanobacterial genus Desmonostoc gen. nov. including D. muscorum comb. nov. as a distinct, phylogenetically coherent taxon related to the genus Nostoc . . Fottea 13:, 201–213.[CrossRef]
    [Google Scholar]
  29. Komárek J. . ( 2013; ). Cyanoprokaryota. Part 3: Heterocytous Genera (Süßwasserflora von Mitteleuropa, vol. 19/3). Edited by Büdel B. , Gärtner G. , Krientz L. , Schagerl M. . . Munich:: Springer;.
    [Google Scholar]
  30. Komárek J. , Anagnostidis K. . ( 1989; ). Modern approach to the classification system of cyanophytes 4 – Nostocales. . Algol Stud 56:, 247–345.
    [Google Scholar]
  31. Komárek J. , Genuário D. B. , Fiore M. F. , Elster J. . ( 2014; ). Heterocytous cyanobacteria of the Ulu peninsula, James Ross island, Antarctica: relations to species from South Shetlands Islands. . Polar Biol (in press).
    [Google Scholar]
  32. Lazaroff N. . ( 1966; ). Photoinduction and photoreversal of the nostocacean developmental cycle. . J Phycol 2:, 7–17. [CrossRef]
    [Google Scholar]
  33. Lazaroff N. , Vishniac W. . ( 1961; ). The effect of light on this developmental cycle of Nostoc muscorum, a filamentous blue–green alga. . J Gen Microbiol 25:, 365–374. [CrossRef] [PubMed]
    [Google Scholar]
  34. Lewis J. R. . ( 1961; ). The littoral zone on rocky shores - a biological or physical entity?. Oikos 12:, 280–301. [CrossRef]
    [Google Scholar]
  35. Ludwig W. , Strunk O. , Klugbauer S. , Klugbauer N. , Weizenegger M. , Neumaier J. , Bachleitner M. , Schleifer K. H. . ( 1998; ). Bacterial phylogeny based on comparative sequence analysis. . Electrophoresis 19:, 554–568. [CrossRef] [PubMed]
    [Google Scholar]
  36. Lukešová A. , Johansen J. R. , Martin M. P. , Casamatta D. A. . ( 2009; ). Aulosira bohemensis sp. nov.: further phylogenetic uncertainty at the base of the nostocales (Cyanobacteria). . Phycologia 48:, 118–129. [CrossRef]
    [Google Scholar]
  37. Mateo P. , Perona E. , Berrendero E. , Leganés F. , Martín M. , Golubić S. . ( 2011; ). Life cycle as a stable trait in the evaluation of diversity of Nostoc from biofilms in rivers. . FEMS Microbiol Ecol 76:, 185–198. [CrossRef] [PubMed]
    [Google Scholar]
  38. Miyashita H. , Ikemoto H. , Kurano N. , Miyachi S. , Chihara M. . ( 2003; ). Acaryochloris marina gen. et sp. nov. (Cyanobacteria), an oxygenic photosynthetic prokaryote containing Chl D as a major pigment. . J Phycol 39:, 1247–1253. [CrossRef]
    [Google Scholar]
  39. Moisander P. H. , McClinton E. III , Paerl H. W. . ( 2002; ). Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. . Microb Ecol 43:, 432–442. [CrossRef] [PubMed]
    [Google Scholar]
  40. Novis P. M. , Smissen R. D. . ( 2006; ). Two generic and ecological groups of Nostoc commune in Victoria Land, Antarctica, revealed by AFLP analysis. . Antarct Sci 18:, 573–581. [CrossRef]
    [Google Scholar]
  41. O’Brien H. , Miadlikowska J. , Lutzoni F. . ( 2005; ). Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera . . Eur J Phycol 40:, 363–378. [CrossRef]
    [Google Scholar]
  42. Olson J. B. , Steppe T. F. , Litaker R. W. , Paerl H. W. . ( 1998; ). N2-fixing microbial consortia associated with the ice cover of lake Bonney, Antarctica. . Microb Ecol 36:, 231–238. [CrossRef] [PubMed]
    [Google Scholar]
  43. Oren A. . ( 2000; ). Salts and brines. . In The Ecology of Cyanobacteria, pp. 281–306. Edited by Whitton B. A. , Potts M. . . Dordrecht:: Kluwer Academic;.
    [Google Scholar]
  44. Oren A. . ( 2008; ). Microbial life at high salt concentrations: phylogenetic and metabolic diversity. . Saline Syst 4:, 2. [CrossRef] [PubMed]
    [Google Scholar]
  45. Papaefthimiou D. , Hrouzek P. , Mugnai M. A. , Lukesova A. , Turicchia S. , Rasmussen U. , Ventura S. . ( 2008; ). Differential patterns of evolution and distribution of the symbiotic behaviour in nostocacean cyanobacteria. . Int J Syst Evol Microbiol 58:, 553–564. [CrossRef] [PubMed]
    [Google Scholar]
  46. Parker B. C. , Wharton R. A. . ( 1985; ). Physiological ecology of blue-green algal mats (modern stromatolites) in Antarctic oasis lakes. . Arch Hydrobiol Suppl Algol Stud 38–39:, 331–348.
    [Google Scholar]
  47. R Core Team (2012). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org/
  48. Rajaniemi P. , Hrouzek P. , Kastovská K. , Willame R. , Rantala A. , Hoffmann L. , Komárek J. , Sivonen K. . ( 2005; ). Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). . Int J Syst Evol Microbiol 55:, 11–26. [CrossRef] [PubMed]
    [Google Scholar]
  49. Řeháková K. , Johansen J. R. , Casamatta D. , Xuesong L. , Vincent J. . ( 2007; ). Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. nov.. Phycologia 46:, 481–502. [CrossRef]
    [Google Scholar]
  50. Rippka R. . ( 1988; ). Isolation and purification of cyanobacteria. . Methods Enzymol 167:, 3–27. [CrossRef] [PubMed]
    [Google Scholar]
  51. Ronquist F. , Huelsenbeck J. P. . ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. . Bioinformatics 19:, 1572–1574. [CrossRef] [PubMed]
    [Google Scholar]
  52. Sakamoto T. , Kumihashi K. , Kunita S. , Masaura T. , Inoue-Sakamoto K. , Yamaguchi M. . ( 2011; ). The extracellular-matrix-retaining cyanobacterium Nostoc verrucosum accumulates trehalose, but is sensitive to desiccation. . FEMS Microbiol Ecol 77:, 385–394. [CrossRef] [PubMed]
    [Google Scholar]
  53. Severin I. , Confurius-Guns V. , Stal L. J. . ( 2012; ). Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats. . Arch Microbiol 194:, 483–491. [CrossRef] [PubMed]
    [Google Scholar]
  54. Silva C. S. P. , Genuário D. B. , Vaz M. G. M. V. , Fiore M. F. . ( 2014; ). Phylogeny of culturable cyanobacteria from Brazilian mangroves. . Syst Appl Microbiol 37:, 100–112. [CrossRef] [PubMed]
    [Google Scholar]
  55. Simmons G. M. , Vestal J. R. , Wharton R. A. Jr . ( 1993; ). Environmental regulators of microbial activity in continental Antarctic lakes. . In Physical and Biogeochemical Processes in Antarctic Lakes (Antarctic Research Series), pp. 491–541. Edited by Green W. J. , Friedmann E. I. . . Washington, DC:: American Geophysical Union;. [CrossRef]
    [Google Scholar]
  56. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  57. Svenning M. M. , Eriksson T. , Rasmussen U. . ( 2005; ). Phylogeny of symbiotic cyanobacteria within the genus Nostoc based on 16S rDNA sequence analyses. . Arch Microbiol 183:, 19–26. [CrossRef] [PubMed]
    [Google Scholar]
  58. Swingley W. D. , Blankenship R. E. , Raymond J. . ( 2008; ). Integrating Markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families. . Mol Biol Evol 25:, 643–654. [CrossRef] [PubMed]
    [Google Scholar]
  59. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  60. Taton A. , Grubisic S. , Brambilla E. , De Wit R. , Wilmotte A. . ( 2003; ). Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. . Appl Environ Microbiol 69:, 5157–5169. [CrossRef] [PubMed]
    [Google Scholar]
  61. Taton A. , Grubisic S. , Ertz D. , Hodgson D. A. , Piccardi R. , Biondi N. , Tredici M. R. , Mainini M. , Losi D. . & other authors ( 2006a; ). Polyphasic study of Antarctic cyanobacterial strains. . J Phycol 42:, 1257–1270. [CrossRef]
    [Google Scholar]
  62. Taton A. , Grubisic S. , Balthasart P. , Hodgson D. A. , Laybourn-Parry J. , Wilmotte A. . ( 2006b; ). Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. . FEMS Microbiol Ecol 57:, 272–289. [CrossRef] [PubMed]
    [Google Scholar]
  63. Taton A. , Hoffmann L. , Wilmotte A. . ( 2008; ). Cyanobacteria in microbial mats of Antarctic lakes (East Antarctic) – a microscopical approach. . Algol Stud 126:, 173–208. [CrossRef]
    [Google Scholar]
  64. Thajuddin N. , Subramanian G. . ( 1992; ). Survey of cyanobacterial flora of the southern east coast of India. . Bot Mar 35:, 305–314. [CrossRef]
    [Google Scholar]
  65. Ventosa A. , Arahal D. R. . ( 2002; ). Physico-chemical characteristics of hypersaline environments and their biodiversity. . In Encyclopedia of Life Support System. Paris:: EOLSS Publishers;. http://www.eolss.net/sample-chapters/c03/e6-73-04-01.pdf
    [Google Scholar]
  66. Wharton R. A. Jr , Parker B. C. , Simmons G. M. Jr . ( 1983; ). Distribution, species composition, and morphology of algal mats in Antarctic dry valley lakes. . Phycologia 22:, 355–365. [CrossRef]
    [Google Scholar]
  67. Young J. P. W. . ( 1992; ). Molecular evolution in diazotrophs: do the genes agree?. In Nitrogen Fixation: from Molecules to Crop Productivity, pp. 161–164. Edited by Pedrosa F. O. , Hungria M. , Yates G. , Newton W. E. . . Dordrecht:: Kluwer Academic;.
    [Google Scholar]
  68. Zehr J. P. , Capone D. G. . ( 1996; ). Problems and promises of assaying the genetic potential for nitrogen fixation in the marine environment. . Microb Ecol 32:, 263–281. [CrossRef] [PubMed]
    [Google Scholar]
  69. Zehr J. P. , Mellon M. T. , Hiorns W. D. . ( 1997; ). Phylogeny of cyanobacterial nifH genes: evolutionary implications and potential applications to natural assemblages. . Microbiology 143:, 1443–1450. [CrossRef] [PubMed]
    [Google Scholar]
  70. Zehr J. P. , Jenkins B. D. , Short S. M. , Steward G. F. . ( 2003; ). Nitrogenase gene diversity and microbial community structure: a cross-system comparison. . Environ Microbiol 5:, 539–554. [CrossRef] [PubMed]
    [Google Scholar]
  71. Zuker M. . ( 2003; ). Mfold web server for nucleic acid folding and hybridization prediction. . Nucleic Acids Res 31:, 3406–3415. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.070078-0
Loading
/content/journal/ijsem/10.1099/ijs.0.070078-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error