1887

Abstract

An extremely halophilic archaeon, strain IC35, was isolated from a mud sample of the Aran-Bidgol salt lake in Iran. The novel strain was cream, non-motile, rod-shaped and required at least 2.5 M NaCl, but not MgCl, for growth. Optimal growth was achieved with 3.4 M NaCl and 0.1 M MgCl. The optimum pH and temperature for growth were pH 7.0 (grew over a pH range of 6.5–9.0) and 40 °C (grew over a temperature range of 30–50 °C), respectively. Analysis of 16S rRNA gene sequences revealed that strain IC35 clustered with species of the genus , with sequence similarities of 97.3 %, 96.6 % and 96.3 %, respectively, to IC38, EJ-46 and XH-70. The rpoB′ gene similarities between the novel strain and IBRC-M 10022, JCM 13892 and JCM 14624 were 90.2 %, 90.2 % and 89.9 %, respectively. The polar lipid pattern of strain IC35 consisted of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester; six unknown glycolipids and two minor phospholipids were also observed. The only quinone present was MK-8 (II-H). The GC content of the genomic DNA was 63.2 mol%. DNA–DNA hybridization studies (29 % hybridization with IBRC-M 10022), as well as biochemical and physiological characterization, allowed strain IC35 to be differentiated from other species of the genus . A novel species, sp. nov., is therefore proposed to accommodate this strain. The type strain is IC35 ( = IBRC-M 10256 = KCTC 4050).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.069757-0
2015-01-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/1/65.html?itemId=/content/journal/ijsem/10.1099/ijs.0.069757-0&mimeType=html&fmt=ahah

References

  1. Amoozegar M. A., Makhdoumi-Kakhki A., Mehrshad M., Riazi S. R., Ventosa A.. ( 2014;). Halovivax limisalsi sp. nov., an extremely halophilic archaeon from a hypersaline mud. . Int J Syst Evol Microbiol. 64:, 3422–3426. [CrossRef][PubMed]
    [Google Scholar]
  2. Balch W. E., Wolfe R. S.. ( 1976;). New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. . Appl Environ Microbiol 32:, 781–791.[PubMed]
    [Google Scholar]
  3. Bryant M. P.. ( 1972;). Commentary on the Hungate technique for culture of anaerobic bacteria. . Am J Clin Nutr 25:, 1324–1328.[PubMed]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  5. Castillo A. M., Gutiérrez M. C., Kamekura M., Ma Y., Cowan D. A., Jones B. E., Grant W. D., Ventosa A.. ( 2006;). Halovivax asiaticus gen. nov., sp. nov., a novel extremely halophilic archaeon isolated from Inner Mongolia, China. . Int J Syst Evol Microbiol 56:, 765–770. [CrossRef][PubMed]
    [Google Scholar]
  6. Castillo A. M., Gutiérrez M. C., Kamekura M., Xue Y., Ma Y., Cowan D. A., Jones B. E., Grant W. D., Ventosa A.. ( 2007;). Halovivax ruber sp. nov., an extremely halophilic archaeon isolated from Lake Xilinhot, Inner Mongolia, China. . Int J Syst Evol Microbiol 57:, 1024–1027. [CrossRef][PubMed]
    [Google Scholar]
  7. Danson M. J., Hough D. W. . ( 1997;). The structural basis of protein halophilicity. Comp Riochem physiol.. , A: physiol 117, 307–312.
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  9. DeLong E. F.. ( 1992;). Archaea in coastal marine environments. . Proc Natl Acad Sci U S A 89:, 5685–5689. [CrossRef][PubMed]
    [Google Scholar]
  10. Dussault H. P.. ( 1955;). An improved technique for staining red halophilic bacteria. . J Bacteriol 70:, 484–485.[PubMed]
    [Google Scholar]
  11. Dyall-Smith M.. ( 2009;). The Halohandbook: Protocols for Haloarchaeal Genetics. . http://www.haloarchaea.com/resources/halohandbook.
  12. Euzéby J. P.. ( 1997;). List of bacterial names with standing in nomenclature: a folder available on the Internet. . Int J Syst Bacteriol 47:, 590–592. http://www.bacterio.net [CrossRef][PubMed]
    [Google Scholar]
  13. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  14. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  15. González C., Gutiérrez C., Ramirez C.. ( 1978;). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24:, 710–715. [CrossRef][PubMed]
    [Google Scholar]
  16. Grant W. D., Kamekura M., McGenity T. J., Ventosa A.. ( 2001;). Order I. Halobacteriales. . In Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol. 1, The Archaea and the Deeply Branching and Phototrophic Bacteria, pp 294–334. Edited Boone D. R., Castenholz R. W., Garrity G. M... New York:: Springer;.
    [Google Scholar]
  17. Gutiérrez C., González C.. ( 1972;). Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. . Appl Microbiol 24:, 516–517.[PubMed]
    [Google Scholar]
  18. Hezayen F. F., Rehm B. H. A., Tindall B. J., Steinbüchel A.. ( 2001;). Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). . Int J Syst Evol Microbiol 51:, 1133–1142. [CrossRef][PubMed]
    [Google Scholar]
  19. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  20. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R.. ( 1985;). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. . Proc Natl Acad Sci U S A 82:, 6955–6959. [CrossRef][PubMed]
    [Google Scholar]
  21. Madigan M. T., Orent A.. ( 1999;). Thermophilic and halophilic extremophiles. . Curr Opin Microbiol 2:, 265–269. [CrossRef][PubMed]
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Evol Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  23. Minegishi H., Kamekura M., Itoh T., Echigo A., Usami R., Hashimoto T.. ( 2010;). Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B′ (rpoB′) gene. . Int J Syst Evol Microbiol 60:, 2398–2408. [CrossRef][PubMed]
    [Google Scholar]
  24. Oren A.. ( 2010;). Industrial and environmental applications of halophilic microorganisms. . Environ Technol 31:, 825–834. [CrossRef][PubMed]
    [Google Scholar]
  25. Oren A., Ventosa A., Grant W. D.. ( 1997;). Proposed minimal standards for description of new taxa in the order Halobacteriales. . Int J Syst Bacteriol 47:, 233–238. [CrossRef]
    [Google Scholar]
  26. Parte A. C.. ( 2014;). LPSN–list of prokaryotic names with standing in nomenclature. . Nucleic Acids Res 42: (D1), D613–D616. [CrossRef][PubMed]
    [Google Scholar]
  27. Rzhetsky A., Nei M.. ( 1992;). A simple method for estimating and testing minimum-evolution trees. . Mol Biol Evol 9:, 945–967.
    [Google Scholar]
  28. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  29. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  30. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  32. van den Burg B.. ( 2003;). Extremophiles as a source for novel enzymes. . Curr Opin Microbiol 6:, 213–218. [CrossRef][PubMed]
    [Google Scholar]
  33. Wainø M., Tindall B. J., Ingvorsen K.. ( 2000;). Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. . Int J Syst Evol Microbiol 50:, 183–190. [CrossRef][PubMed]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.069757-0
Loading
/content/journal/ijsem/10.1099/ijs.0.069757-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error