1887

Abstract

A Gram-stain-negative, strictly aerobic, non-motile, non-spore-forming, yellow, rod-shaped bacterium, designated S-II-13, was isolated from ground water at Daejeon in Korea. Strain S-II-13 grew between 15 and 30 °C (optimal growth at 28 °C), between pH 6.0 and 9.0 (optimal growth at pH 7.5) and at salinities of 0.3–1.5 % (w/v) NaCl, growing optimally with 0.5 % (w/v) NaCl. On the basis of 16S rRNA gene sequence analysis, strain S-II-13 was found to belong to the genus , showing closest phylogenetic similarity to CA1 (97.0 % 16S rRNA gene sequence similarity), HL-25 (96.9 %) and HU1-GD12 (96.6 %). The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine and sphingoglycolipid. The predominant ubiquinone was Q-10. The major fatty acids were Cω7, C 2-OH, C and summed feature 3 (Cω7 and/or iso-C 2-OH). The DNA G+C content of strain S-II-13 was 63.5 mol%. DNA–DNA relatedness between strain S-II-13 and LMG 17323, KCTC 23953 and KCTC 22289 was 24, 52 and 55 %, respectively. On the basis of evidence from this taxonomic study using a polyphasic approach, strain S-II-13 represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is S-II-13 ( = KACC 17606 = NBRC 109814).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.069708-0
2015-02-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/2/393.html?itemId=/content/journal/ijsem/10.1099/ijs.0.069708-0&mimeType=html&fmt=ahah

References

  1. Baek S. H., Lim J. H., Lee S. T.. ( 2010;). Sphingobium vulgare sp. nov., isolated from freshwater sediment. . Int J Syst Evol Microbiol 60:, 2473–2477. [CrossRef][PubMed]
    [Google Scholar]
  2. Busse H.-J., Bunka S., Hensel A., Lubitz W.. ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47:, 698–708. [CrossRef]
    [Google Scholar]
  3. Chen H., Jogler M., Rohde M., Klenk H.-P., Busse H.-J., Tindall B. J., Spröer C., Overmann J.. ( 2013;). Sphingobium limneticum sp. nov. and Sphingobium boeckii sp. nov., two freshwater planktonic members of the family Sphingomonadaceae, and reclassification of Sphingomonas suberifaciens as Sphingobium suberifaciens comb. nov.. Int J Syst Evol Microbiol 63:, 735–743. [CrossRef][PubMed]
    [Google Scholar]
  4. Collins M. D., Jones D.. ( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. . Microbiol Rev 45:, 316–354.[PubMed]
    [Google Scholar]
  5. DeLong E. F.. ( 1992;). Archaea in coastal marine environments. . Proc Natl Acad Sci U S A 89:, 5685–5689. [CrossRef][PubMed]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  7. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  10. Francis I. M., Jochimsen K. N., De Vos P., van Bruggen A. H. C.. ( 2014;). Reclassification of rhizosphere bacteria including strains causing corky root of lettuce and proposal of Rhizorhapis suberifaciens gen. nov., comb. nov., Sphingobium mellinum sp. nov., Sphingobium xanthum sp. nov. and Rhizorhabdus argentea gen. nov., sp. nov.. Int J Syst Evol Microbiol 64:, 1340–1350. [CrossRef][PubMed]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  12. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  13. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). Clustal W and Clustal X version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  15. Murray R. G. E., Doetsch R. N., Robinow F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  16. Parte A. C.. ( 2014;). List of prokaryotic names with standing in nomenclature. . http://www.bacterio.net
    [Google Scholar]
  17. Saito H., Miura K. I.. ( 1963;). Preparation of transforming deoxyribonucleic acid by phenol treatment. . Biochim Biophys Acta 72:, 619–629. [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  19. Sheu S.-Y., Shiau Y.-W., Chen W.-M.. ( 2013;). Sphingobium sufflavum sp. nov., isolated from a freshwater lake. . Int J Syst Evol Microbiol 63:, 3444–3450. [CrossRef][PubMed]
    [Google Scholar]
  20. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  21. Taibi G., Schiavo M. R., Gueli M. C., Calanni Rindina P., Muratore R., Nicotra C. M. A.. ( 2000;). Rapid and simultaneous high-performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. . J Chromatogr B Biomed Sci Appl 745:, 431–437. [CrossRef][PubMed]
    [Google Scholar]
  22. Takeuchi M., Hamana K., Hiraishi A.. ( 2001;). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 51:, 1405–1417.[PubMed]
    [Google Scholar]
  23. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  24. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  25. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  26. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H.. ( 1990;). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. . Microbiol Immunol 34:, 99–119. [CrossRef][PubMed]
    [Google Scholar]
  27. Yabuuchi E., Kosako Y., Naka T., Suzuki S., Yano I.. ( 1999;). Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas. . Microbiol Immunol 43:, 339–349. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.069708-0
Loading
/content/journal/ijsem/10.1099/ijs.0.069708-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error