1887

Abstract

A Gram-stain-positive, non-motile, rod- or coccoid-shaped actinobacterium, designated strain A33, was isolated from a forest soil sample from Nanjing, Jiangsu Province, PR China. The strain grew optimally at 30 °C, pH 7.0 and with 3 % NaCl (w/v). Phylogenetic analysis of the strain, based on 16S rRNA gene sequences, showed that it was most closely related to (98.4 % sequence similarity), (97.5 %), (97.4 %), (97.3 %) and (97.0 %). The major cellular fatty acids were anteiso-C, anteiso-C and iso-C; MK-9(H) was the predominant respiratory quinone. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and three glycolipids. Cell-wall analysis revealed that the peptidoglycan type was A3α, based on -lysine--alanine; the cell-wall sugars were galactose and mannose. The genomic G+C content of strain A33 was 66.8 mol%. The low DNA–DNA relatedness values between strain A33 and recognized species of the genus and many phenotypic properties supported the classification of strain A33 as a representative of a novel species of the genus , for which the name sp. nov. is proposed. The type strain is A33 ( = CCTCC AB 2014069 = DSM 28237).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.069492-0
2015-02-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/2/365.html?itemId=/content/journal/ijsem/10.1099/ijs.0.069492-0&mimeType=html&fmt=ahah

References

  1. Chen Y.-G., Tang S.-K., Zhang Y.-Q., Li Z.-Y., Yi L.-B., Wang Y.-X., Li W.-J., Cui X.-L.. ( 2009;). Arthrobacter halodurans sp. nov., a new halotolerant bacterium isolated from sea water. . Antonie van Leeuwenhoek 96:, 63–70. [CrossRef][PubMed]
    [Google Scholar]
  2. Collins M. D.. ( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M., Minnikin D. E... London:: Academic Press;.
    [Google Scholar]
  3. Conn H. J., Dimmick I.. ( 1947;). Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. . J Bacteriol 54:, 291–303.[PubMed]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  8. Funke G., Hutson R. A., Bernard K. A., Pfyffer G. E., Wauters G., Collins M. D.. ( 1996;). Isolation of Arthrobacter spp. from clinical specimens and description of Arthrobacter cumminsii sp. nov. and Arthrobacter woluwensis sp. nov.. J Clin Microbiol 34:, 2356–2363.[PubMed]
    [Google Scholar]
  9. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N.. ( 1974;). Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. . Int J Syst Bacteriol 24:, 54–63. [CrossRef]
    [Google Scholar]
  10. Heyrman J., Verbeeren J., Schumann P., Swings J., De Vos P.. ( 2005;). Six novel Arthrobacter species isolated from deteriorated mural paintings. . Int J Syst Evol Microbiol 55:, 1457–1464. [CrossRef][PubMed]
    [Google Scholar]
  11. Huang Z., Sheng X.-F., Zhao F., He L.-Y., Huang J., Wang Q.. ( 2012;). Isoptericola nanjingensis sp. nov., a mineral-weathering bacterium. . Int J Syst Evol Microbiol 62:, 971–976. [CrossRef][PubMed]
    [Google Scholar]
  12. Irlinger F., Bimet F., Delettre J., Lefèvre M., Grimont P. A. D.. ( 2005;). Arthrobacter bergerei sp. nov. and Arthrobacter arilaitensis sp. nov., novel coryneform species isolated from the surfaces of cheeses. . Int J Syst Evol Microbiol 55:, 457–462. [CrossRef][PubMed]
    [Google Scholar]
  13. Jones D., Keddie R. M.. ( 1992;). The genus Arthrobacter. . In The Prokaryotes, pp. 1283–1299. Edited by Balows A., Trüper H.-G., Dworkin M., Harder W., Schleifer K.-H... New York:: Springer;.
    [Google Scholar]
  14. Kageyama A., Morisaki K., Ōmura S., Takahashi Y.. ( 2008;). Arthrobacter oryzae sp. nov. and Arthrobacter humicola sp. nov.. Int J Syst Evol Microbiol 58:, 53–56. [CrossRef][PubMed]
    [Google Scholar]
  15. Keddie R. M., Collins M. D., Jones D.. ( 1986;). Genus Arthrobacter Conn and Dimmick 1947, 300AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 2, pp. 1288–1301. Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G... Baltimore, MD:: Williams & Wilkins;.
    [Google Scholar]
  16. Kim K. K., Lee K. C., Oh H.-M., Kim M. J., Eom M. K., Lee J.-S.. ( 2008;). Arthrobacter defluvii sp. nov., 4-chlorophenol-degrading bacteria isolated from sewage. . Int J Syst Evol Microbiol 58:, 1916–1921. [CrossRef][PubMed]
    [Google Scholar]
  17. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  18. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  19. Li Y., Kawamura Y., Fujiwara N., Naka T., Liu H., Huang X., Kobayashi K., Ezaki T.. ( 2004;). Rothia aeria sp. nov., Rhodococcus baikonurensis sp. nov. and Arthrobacter russicus sp. nov., isolated from air in the Russian space laboratory Mir. . Int J Syst Evol Microbiol 54:, 827–835. [CrossRef][PubMed]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  21. Pindi P. K., Manorama R., Begum Z., Shivaji S.. ( 2010;). Arthrobacter antarcticus sp. nov., isolated from an Antarctic marine sediment. . Int J Syst Evol Microbiol 60:, 2263–2266. [CrossRef][PubMed]
    [Google Scholar]
  22. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. SantaCruz-Calvo L., González-López J., Manzanera M.. ( 2013;). Arthrobacter siccitolerans sp. nov., a highly desiccation-tolerant, xeroprotectant-producing strain isolated from dry soil. . Int J Syst Evol Microbiol 63:, 4174–4180. [CrossRef][PubMed]
    [Google Scholar]
  24. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  25. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  26. Schumann P.. ( 2011;). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  27. Shen P., Fan X. R., Li G. W.. ( 1999;). Experiment of Microbiology. Beijing:: Higher Education Press;.
    [Google Scholar]
  28. Stackebrandt E., Fowler V. J., Fiedler F., Seiler H.. ( 1983;). Taxonomic Studies on Arthrobacter nicotianae and Related Taxa: Description of Arthrobacter uratoxydans sp. nov. and Arthrobacter sulfureus sp. nov. and Reclassification of Brevibacterium protophormiae as Arthrobacter protophormiae comb. nov.. Syst Appl Microbiol 4:, 470–486. [CrossRef][PubMed]
    [Google Scholar]
  29. Staneck J. L., Roberts G. D.. ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28:, 226–231.[PubMed]
    [Google Scholar]
  30. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega 6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  31. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  32. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  34. Yassin A. F., Spröer C., Siering C., Hupfer H., Schumann P.. ( 2011;). Arthrobacter equi sp. nov., isolated from veterinary clinical material. . Int J Syst Evol Microbiol 61:, 2089–2094. [CrossRef][PubMed]
    [Google Scholar]
  35. Zhang D.-C., Schumann P., Liu H.-C., Xin Y.-H., Zhou Y.-G., Schinner F., Margesin R.. ( 2010;). Arthrobacter alpinus sp. nov., a psychrophilic bacterium isolated from alpine soil. . Int J Syst Evol Microbiol 60:, 2149–2153. [CrossRef][PubMed]
    [Google Scholar]
  36. Zhang J., Ma Y., Yu H.. ( 2012;). Arthrobacter cupressi sp. nov., an actinomycete isolated from the rhizosphere soil of Cupressus sempervirens. . Int J Syst Evol Microbiol 62:, 2731–2736. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.069492-0
Loading
/content/journal/ijsem/10.1099/ijs.0.069492-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error