1887

Abstract

Strain RK1, a Gram-stain-negative, non-spore-forming, rod-shaped, non-motile bacterium was isolated from a hexachlorocyclohexane (HCH) dumpsite, Lucknow, India. 16S rRNA gene sequence analysis revealed that strain RK1 belongs to the family and showed highest sequence similarity to Jip14 (95.63 %). The major cellular fatty acids of strain RK1 were iso-C, summed feature 3 (Cω7 and/or Cω6), iso-C 3-OH, summed feature 9 (10-methyl C and/or iso-Cω9), iso-C 3-OH and C. The major respiratory pigment and polyamine of RK1 were menaquinone (MK-7) and homospermidine, respectively. The main polar lipids were phosphatidylethanolamine and sphingolipid. The G+C content of the DNA was 44.5 mol%. The results of physiological and biochemical tests and 16S rRNA sequence analysis clearly demonstrated that strain RK1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RK1 ( = DSM 28470 = MCC 2546).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.069104-0
2015-01-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/1/129.html?itemId=/content/journal/ijsem/10.1099/ijs.0.069104-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef][PubMed]
    [Google Scholar]
  2. Bala K., Sharma P., Lal R.. ( 2010;). Sphingobium quisquiliarum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH-contaminated soil. . Int J Syst Evol Microbiol 60:, 429–433. [CrossRef][PubMed]
    [Google Scholar]
  3. Bauer A. W., Kirby W. M. M., Sherris J. C., Turck M.. ( 1966;). Antibiotic susceptibility testing by a standardized single disk method. . Am J Clin Pathol 45:, 493–496.[PubMed]
    [Google Scholar]
  4. Bligh E. G., Dyer W. J.. ( 1959;). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37:, 911–917. [CrossRef][PubMed]
    [Google Scholar]
  5. Bowman J. P., Nichols C. M., Gibson J. A. E.. ( 2003;). Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. . Int J Syst Evol Microbiol 53:, 1343–1355. [CrossRef][PubMed]
    [Google Scholar]
  6. Busse J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomicmarker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  7. Cole J. R., Wang Q., Fish J. A., Chai B., McGarrell D. M., Sun Y., Brown C. T., Porras-Alfaro A., Kuske C. R., Tiedje J. M.. ( 2014;). Ribosomal Database Project: data and tools for high throughput rRNA analysis. . Nucleic Acids Res 42: (Database issue), D633–D642. [CrossRef][PubMed]
    [Google Scholar]
  8. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  9. Dadhwal M., Jit S., Kumari H., Lal R.. ( 2009;). Sphingobium chinhatense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. . Int J Syst Evol Microbiol 59:, 3140–3144. [CrossRef][PubMed]
    [Google Scholar]
  10. Dwivedi V., Niharika N., Lal R.. ( 2013;). Pontibacter lucknowensis sp. nov., isolated from a hexachlorocyclohexane dumpsite. . Int J Syst Evol Microbiol 63:, 309–313. [CrossRef][PubMed]
    [Google Scholar]
  11. Garg N., Bala K., Lal R.. ( 2012;). Sphingobium lucknowense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from HCH-contaminated soil. . Int J Syst Evol Microbiol 62:, 618–623. [CrossRef][PubMed]
    [Google Scholar]
  12. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef][PubMed]
    [Google Scholar]
  13. Gupta S. K., Lal D., Lal R.. ( 2009;). Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil. . Int J Syst Evol Microbiol 59:, 156–161. [CrossRef][PubMed]
    [Google Scholar]
  14. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;. [CrossRef]
    [Google Scholar]
  15. Kim M. K., Na J. R., Cho D. H., Soung N. K., Yang D. C.. ( 2007;). Parapedobacter koreensis gen. nov., sp. nov.. Int J Syst Evol Microbiol 57:, 1336–1341. [CrossRef][PubMed]
    [Google Scholar]
  16. Kim M. K., Kim Y. A., Kim Y. J., Soung N. K., Yi T. H., Kim S. Y., Yang D. C.. ( 2008;). Parapedobacter soli sp. nov., isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 58:, 337–340. [CrossRef][PubMed]
    [Google Scholar]
  17. Kim S. J., Weon H. Y., Kim Y. S., Yoo S. H., Kim B. Y., Anandham R., Kwon S. W.. ( 2010;). Parapedobacter luteus sp. nov. and Parapedobacter composti sp. nov., isolated from cotton waste compost. . Int J Syst Evol Microbiol 60:, 1849–1853. [CrossRef][PubMed]
    [Google Scholar]
  18. Kim O. S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  19. Kumar M., Verma M., Lal R.. ( 2008;). Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. . Int J Syst Evol Microbiol 58:, 861–865. [CrossRef][PubMed]
    [Google Scholar]
  20. Kumari H., Gupta S. K., Jindal S., Katoch P., Lal R.. ( 2009;). Sphingobium lactosutens sp. nov., isolated from a hexachlorocyclohexane dumpsite and Sphingobium abikonense sp. nov., isolated from oil-contaminated soil. . Int J Syst Evol Microbiol 59:, 2291–2296. [CrossRef][PubMed]
    [Google Scholar]
  21. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradorhizobium japonicum. . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  22. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. ( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  23. McCarthy A. J., Cross T.. ( 1984;). A taxonomic study of Thermomonospora and other monosporic actinomycetes. . J Gen Microbiol 130:, 5–25.
    [Google Scholar]
  24. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  25. Myers E. W., Miller W.. ( 1988;). Optimal alignments in linear space. . Comput Appl Biosci 4:, 11–17.[PubMed]
    [Google Scholar]
  26. Ntougias S., Fasseas C., Zervakis G. I.. ( 2007;). Olivibacter sitiensis gen. nov., sp. nov., isolated from alkaline olive-oil mill wastes in the region of Sitia, Crete. . Int J Syst Evol Microbiol 57:, 398–404. [CrossRef][PubMed]
    [Google Scholar]
  27. Prakash O., Verma M., Sharma P., Kumar M., Kumari K., Singh A., Kumari H., Jit S., Gupta S. K. et al. ( 2007;). Polyphasic approach of bacterial classification - an overview of recent advances. . Indian J Microbiol 47:, 98–108. [CrossRef][PubMed]
    [Google Scholar]
  28. Sangwan N., Lata P., Dwivedi V., Singh A., Niharika N., Kaur J., Anand S., Malhotra J., Jindal S. et al. ( 2012;). Comparative metagenomic analysis of soil microbial communities across three hexachlorocyclohexane contamination levels. . PLoS ONE 7:, e46219. [CrossRef][PubMed]
    [Google Scholar]
  29. Sangwan N., Verma H., Kumar R., Negi V., Lax S., Khurana P., Khurana J. P., Gilbert J. A., Lal R.. ( 2014;). Reconstructing an ancestral genotype of two hexachlorocyclohexane-degrading Sphingobium species using metagenomic sequence data. . ISME J 8:, 398–408. [CrossRef][PubMed]
    [Google Scholar]
  30. Sharma P., Verma M., Bala K., Nigam A., Lal R.. ( 2010;). Sphingopyxis ummariensis sp. nov., isolated from a hexachlorocyclohexane dumpsite. . Int J Syst Evol Microbiol 60:, 780–784. [CrossRef][PubMed]
    [Google Scholar]
  31. Singh A., Lal R.. ( 2009;). Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. . Int J Syst Evol Microbiol 59:, 162–166. [CrossRef][PubMed]
    [Google Scholar]
  32. Singh A. K., Garg N., Sangwan N., Negi V., Kumar R., Vikram S., Lal R.. ( 2013;). Pontibacter ramchanderi sp. nov., isolated from hexachlorocyclohexane-contaminated pond sediment. . Int J Syst Evol Microbiol 63:, 2829–2834. [CrossRef][PubMed]
    [Google Scholar]
  33. Singh A. K., Garg N., Lata P., Kumar R., Negi V., Vikram S., Lal R.. ( 2014;). Pontibacter indicus sp. nov., isolated from hexachlorocyclohexane-contaminated soil. . Int J Syst Evol Microbiol 64:, 254–259. [CrossRef][PubMed]
    [Google Scholar]
  34. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J.. ( 1998;). Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. Proposal of the family Sphingobacteriaceae fam. nov.. Int J Syst Bacteriol 48:, 165–177. [CrossRef][PubMed]
    [Google Scholar]
  35. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  36. Vanbroekhoven K., Ryngaert A., Bastiaens L., Wattiau P., Vancanneyt M., Swings J., De Mot R., Springael D.. ( 2004;). Streptomycin as a selective agent to facilitate recovery and isolation of introduced and indigenous Sphingomonas from environmental samples. . Environ Microbiol 6:, 1123–1136. [CrossRef][PubMed]
    [Google Scholar]
  37. Yabuuchi E., Kaneko T., Yano I., Moss C. W., Miyoshi N.. ( 1983;). Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose non-fermenting Gram-negative rods in CDC groups IIK-2 and IIb. . Int J Syst Bacteriol 33:, 580–598. [CrossRef]
    [Google Scholar]
  38. Zhao J. K., Li X. M., Zhang M. J., Jin J. H., Jiang C. Y., Liu S. J.. ( 2013;). Parapedobacter pyrenivorans sp. nov., isolated from a pyrene-degrading microbial enrichment, and emended description of the genus Parapedobacter. . Int J Syst Evol Microbiol 63:, 3994–3999. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.069104-0
Loading
/content/journal/ijsem/10.1099/ijs.0.069104-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error