1887

Abstract

A taxonomic study was carried out on strain P73, which was isolated from deep-sea sediment of the Indian Ocean by enrichment of polycyclic aromatic hydrocarbons. The strain was able to degrade biphenyl, naphthalene, 2-methylnaphthalene, 2,6-dimethylnaphthalene, acenaphthene, anthracene, phenanthrene, dibenzothiophene, dibenzofuran, fluorene, 4-methyldibenzothiophene and fluoranthene, but not pyrene or chrysene. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain P73 formed a clade with the genera and within the family , with highest sequence similarity of 96.98 % to H 14, followed by ZXM137 (96.42 %). The bacterium was Gram-stain-negative, oxidase- and catalase-positive, rod-shaped and non-motile. Growth was observed at salinities from 0.5 to 12 % and at temperatures from 10 to 41 °C. The principal fatty acids (>10 %) of strain P73 were summed feature 8 (Cω7/ω6) and Cω8 cyclo. The sole respiratory quinone was Q-10. The major lipids were phosphatidylglycerol, one unknown aminolipid, one unknown phospholipid and one unknown lipid; a second unknown phospholipid and one unknown glycolipid were present as minor components. The G+C content of the chromosomal DNA was 66.0 mol%. The combined genotypic and phenotypic data show that strain P73 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is P73 ( = MCCC 1A01112 = LMG 27600 = DSM 27257). Phylogenetic study and existing phenotypic information also show that should be transferred to the genus as comb. nov. (type strain ZXM137 = MCCC 1A06432 = CGMCC 1.8891 = LMG 24854).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.069039-0
2014-12-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/12/4160.html?itemId=/content/journal/ijsem/10.1099/ijs.0.069039-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J., Smith J. A., Struhl K.. ( 2002;). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, , 5th edn.. New York:: Wiley;.
    [Google Scholar]
  2. Baek K., Choi A., Kang I., Cho J. C.. ( 2014;). Celeribacter marinus sp. nov., isolated from coastal seawater. . Int J Syst Evol Microbiol 64:, 1323–1327. [CrossRef][PubMed]
    [Google Scholar]
  3. Bligh E. G., Dyer W. J.. ( 1959;). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37:, 911–917. [CrossRef][PubMed]
    [Google Scholar]
  4. Chung W. K., King G. M.. ( 2001;). Isolation, characterization, and polyaromatic hydrocarbon degradation potential of aerobic bacteria from marine macrofaunal burrow sediments and description of Lutibacterium anuloederans gen. nov., sp. nov., and Cycloclasticus spirillensus sp. nov.. Appl Environ Microbiol 67:, 5585–5592. [CrossRef][PubMed]
    [Google Scholar]
  5. Collins J. F., Brown J. P., Alexeeff G. V., Salmon A. G.. ( 1998;). Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. . Regul Toxicol Pharmacol 28:, 45–54. [CrossRef][PubMed]
    [Google Scholar]
  6. Cui Z., Lai Q., Dong C., Shao Z.. ( 2008;). Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge. . Environ Microbiol 10:, 2138–2149. [CrossRef][PubMed]
    [Google Scholar]
  7. Dong X., Cai M.. ( 2001;). Determinative Manual for Routine Bacteriology. Beijing:: Scientific Press; (English translation).
    [Google Scholar]
  8. Dyksterhouse S. E., Gray J. P., Herwig R. P., Lara J. C., Staley J. T.. ( 1995;). Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. . Int J Syst Bacteriol 45:, 116–123. [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  10. Geiselbrecht A. D., Herwig R. P., Deming J. W., Staley J. T.. ( 1996;). Enumeration and phylogenetic analysis of polycyclic aromatic hydrocarbon-degrading marine bacteria from Puget sound sediments. . Appl Environ Microbiol 62:, 3344–3349.[PubMed]
    [Google Scholar]
  11. Hatano K., Nishii T., Kasai H.. ( 2003;). Taxonomic re-evaluation of whorl-forming Streptomyces (formerly Streptoverticillium) species by using phenotypes, DNA–DNA hybridization and sequences of gyrB, and proposal of Streptomyces luteireticuli (ex Katoh and Arai 1957) corrig., sp. nov., nom. rev.. Int J Syst Evol Microbiol 53:, 1519–1529. [CrossRef][PubMed]
    [Google Scholar]
  12. Hedlund B. P., Staley J. T.. ( 2001;). Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon (PAH)-degrading marine bacterium. . Int J Syst Evol Microbiol 51:, 61–66.[PubMed]
    [Google Scholar]
  13. Hedlund B. P., Staley J. T.. ( 2006;). Isolation and characterization of Pseudoalteromonas strains with divergent polycyclic aromatic hydrocarbon catabolic properties. . Environ Microbiol 8:, 178–182. [CrossRef][PubMed]
    [Google Scholar]
  14. Hedlund B. P., Geiselbrecht A. D., Bair T. J., Staley J. T.. ( 1999;). Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov.. Appl Environ Microbiol 65:, 251–259.[PubMed]
    [Google Scholar]
  15. Hedlund B. P., Geiselbrecht A. D., Staley J. T.. ( 2001;). Marinobacter strain NCE312 has a Pseudomonas-like naphthalene dioxygenase. . FEMS Microbiol Lett 201:, 47–51. [CrossRef][PubMed]
    [Google Scholar]
  16. Ivanova E. P., Webb H., Christen R., Zhukova N. V., Kurilenko V. V., Kalinovskaya N. I., Crawford R. J.. ( 2010;). Celeribacter neptunius gen. nov., sp. nov., a new member of the class Alphaproteobacteria. . Int J Syst Evol Microbiol 60:, 1620–1625. [CrossRef][PubMed]
    [Google Scholar]
  17. Kasai H., Tamura T., Harayama S.. ( 2000;). Intrageneric relationships among Micromonospora species deduced from gyrB-based phylogeny and DNA relatedness. . Int J Syst Evol Microbiol 50:, 127–134. [CrossRef][PubMed]
    [Google Scholar]
  18. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  19. Kim M., Oh H. S., Park S. C., Chun J.. ( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. . Int J Syst Evol Microbiol 64:, 346–351. [CrossRef][PubMed]
    [Google Scholar]
  20. Kirby B. M., Everest G. J., Meyers P. R.. ( 2010;). Phylogenetic analysis of the genus Kribbella based on the gyrB gene: proposal of a gyrB-sequence threshold for species delineation in the genus Kribbella. . Antonie van Leeuwenhoek 97:, 131–142. [CrossRef][PubMed]
    [Google Scholar]
  21. Lai Q., Yuan J., Wu C., Shao Z.. ( 2009;). Oceanibaculum indicum gen. nov., sp. nov., isolated from deep seawater of the Indian Ocean. . Int J Syst Evol Microbiol 59:, 1733–1737. [CrossRef][PubMed]
    [Google Scholar]
  22. Lee S. Y., Park S., Oh T. K., Yoon J. H.. ( 2012;). Celeribacter baekdonensis sp. nov., isolated from seawater, and emended description of the genus Celeribacter Ivanova et al. 2010. . Int J Syst Evol Microbiol 62:, 1359–1364. [CrossRef][PubMed]
    [Google Scholar]
  23. Liu C., Shao Z.. ( 2005;). Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. . Int J Syst Evol Microbiol 55:, 1181–1186. [CrossRef][PubMed]
    [Google Scholar]
  24. Meador J. P., Stein J. E., Reichert W. L., Varanasi U.. ( 1995;). Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. . Rev Environ Contam Toxicol 143:, 79–165.[PubMed]
    [Google Scholar]
  25. Meier-Kolthoff J. P., Göker M., Spröer C., Klenk H. P.. ( 2013;). When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 195:, 413–418. [CrossRef][PubMed]
    [Google Scholar]
  26. Mesbah M., Whitman W. B.. ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. . J Chromatogr A 479:, 297–306. [CrossRef][PubMed]
    [Google Scholar]
  27. Perelo L. W.. ( 2010;). Review: In situ and bioremediation of organic pollutants in aquatic sediments. . J Hazard Mater 177:, 81–89. [CrossRef][PubMed]
    [Google Scholar]
  28. Rzhetsky A., Nei M.. ( 1992;). A simple method for estimating and testing minimum-evolution trees. . Mol Biol Evol 9:, 945–967.
    [Google Scholar]
  29. Rzhetsky A., Nei M.. ( 1993;). Theoretical foundation of the minimum-evolution method of phylogenetic inference. . Mol Biol Evol 10:, 1073–1095.[PubMed]
    [Google Scholar]
  30. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  31. Sambrook J., Fritsch E., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  32. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  33. Shieh W. Y., Chen Y. W., Chaw S. M., Chiu H. H.. ( 2003;). Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. . Int J Syst Evol Microbiol 53:, 479–484. [CrossRef][PubMed]
    [Google Scholar]
  34. Skerman V.. ( 1967;). A Guide to the Identification of the Genera of Bacteria, , 2nd edn.. Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  35. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  36. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  37. Tindall B.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  38. Tindall B.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  39. Tindall B. J., Sikorski J., Smibert R. M., Kreig N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R... Washington, DC:: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
  40. Wang B., Lai Q., Cui Z., Tan T., Shao Z.. ( 2008;). A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1. . Environ Microbiol 10:, 1948–1963. [CrossRef][PubMed]
    [Google Scholar]
  41. Wang H., Zhang X., Yan S., Qi Z., Yu Y., Zhang X. H.. ( 2012;). Huaishuia halophila gen. nov., sp. nov., isolated from coastal seawater. . Int J Syst Evol Microbiol 62:, 223–228. [CrossRef][PubMed]
    [Google Scholar]
  42. Yamamoto S., Kasai H., Arnold D. L., Jackson R. W., Vivian A., Harayama S.. ( 2000;). Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. . Microbiology 146:, 2385–2394.[PubMed]
    [Google Scholar]
  43. Yarza P., Yilmaz P., Pruesse E., Glöckner F. O., Ludwig W., Schleifer K. H., Whitman W. B., Euzéby J., Amann R., Rosselló-Móra R.. ( 2014;). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. . Nat Rev Microbiol 12:, 635–645. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.069039-0
Loading
/content/journal/ijsem/10.1099/ijs.0.069039-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error