1887

Abstract

We previously reported the presence of an OXA-23 carbapenemase in an undescribed species of the genus isolated from horse dung at the Faculty of Veterinary Medicine, Ghent University, Belgium. Here we include six strains to corroborate the delineation of this taxon by phenotypic characterization, DNA–DNA hybridization, 16S rRNA gene and sequence analysis, % G+C determination, MALDI-TOF MS and fatty acid analysis. The nearly complete 16S rRNA gene sequence of strain UG 60467 showed the highest similarities with those of the type strains of (98.4 %), (97.7 %), and (97.2 %). The partial sequence of strain UG 60467 showed the highest similarities with ‘’ ANC 3994 (88.6 %), NIPH 2281 (88.6 %) and CIP 107287T (87.3 %). Whole-cell MALDI-TOF MS analyses supported the distinctness of the group at the protein level. The predominant fatty acids of strain UG 60467 were C 3-OH, C, C, Cω9 and summed feature 3 (Cω7 and/or iso-C 2-OH). Strains UG 60467 and UG 60716 showed a DNA–DNA relatedness of 84 % with each other and a DNA–DNA relatedness with LMG 19576 of 17 % and 20 %, respectively. The DNA G+C content of strain UG 60467 was 39.6 mol%. The name sp. nov. is proposed for the novel taxon. The type strain is UG 60467 ( = ANC 4275 = LMG 27960 = DSM 28097).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.068791-0
2014-12-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/12/4007.html?itemId=/content/journal/ijsem/10.1099/ijs.0.068791-0&mimeType=html&fmt=ahah

References

  1. Álvarez-Pérez S., Lievens B., Jacquemyn H., Herrera C. M.. ( 2013;). Acinetobacter nectaris sp. nov. and Acinetobacter boissieri sp. nov., isolated from floral nectar of wild Mediterranean insect-pollinated plants. . Int J Syst Evol Microbiol 63:, 1532–1539. [CrossRef][PubMed]
    [Google Scholar]
  2. Boo T. W., Walsh F., Crowley B.. ( 2009;). Molecular characterization of carbapenem-resistant Acinetobacter species in an Irish university hospital: predominance of Acinetobacter genomic species 3. . J Med Microbiol 58:, 209–216. [CrossRef][PubMed]
    [Google Scholar]
  3. Brisou J., Prévot A. R.. ( 1954;). Etudes de systématique bactérienne. X. Révision des especes réunies dans le genre Achromobacter. . Ann Inst Pasteur (Paris) 86:, 722–728 (in French).[PubMed]
    [Google Scholar]
  4. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci U S A 75:, 4801–4805. [CrossRef][PubMed]
    [Google Scholar]
  5. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J.. ( 2002;). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov.. Int J Syst Evol Microbiol 52:, 1551–1558. [CrossRef][PubMed]
    [Google Scholar]
  6. Freiwald A., Sauer S.. ( 2009;). Phylogenetic classification and identification of bacteria by mass spectrometry. . Nat Protoc 4:, 732–742. [CrossRef][PubMed]
    [Google Scholar]
  7. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K.. ( 1998;). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. . Can J Microbiol 44:, 1148–1153. [CrossRef]
    [Google Scholar]
  8. Guerra B., Fischer J., Helmuth R.. ( 2014;). An emerging public health problem: Acquired carbapenemase-producing microorganisms are present in food-producing animals, their environment, companion animals and wild birds. . Vet Microbiol. [CrossRef]
    [Google Scholar]
  9. Juni E.. ( 2005;). Genus II. Acinetobacter Brisou and Prévot 1954, 727AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 3, pp. 425–437. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M., Boone D. R., De Vos P., Goodfellow M., Rainey F. A., Schleifer K.-H... New York:: Springer;.
    [Google Scholar]
  10. Kim D., Baik K. S., Kim M. S., Park S. C., Kim S. S., Rhee M. S., Kwak Y. S., Seong C. N.. ( 2008;). Acinetobacter soli sp. nov., isolated from forest soil. . J Microbiol 46:, 396–401. [CrossRef][PubMed]
    [Google Scholar]
  11. Krizova L., Maixnerova M., Sedo O., Nemec A.. ( 2014;). Acinetobacter bohemicus sp. nov. widespread in natural soil and water ecosystems in the Czech Republic. . Syst Appl Microbiol 37:, 467–473. [CrossRef][PubMed]
    [Google Scholar]
  12. Li Y., Piao C. G., Ma Y. C., He W., Wang H. M., Chang J. P., Guo L. M., Wang X. Z., Xie S. J., Guo M. W.. ( 2013;). Acinetobacter puyangensis sp. nov., isolated from the healthy and diseased part of Populus × euramericana canker bark. . Int J Syst Evol Microbiol 63:, 2963–2969. [CrossRef][PubMed]
    [Google Scholar]
  13. Li Y., He W., Wang T., Piao C. G., Guo L. M., Chang J. P., Guo M. W., Xie S. J.. ( 2014;). Acinetobacter qingfengensis sp. nov., isolated from canker bark of Populus × euramericana. . Int J Syst Evol Microbiol 64:, 1043–1050. [CrossRef][PubMed]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  15. Mugnier P. D., Poirel L., Naas T., Nordmann P.. ( 2010;). Worldwide dissemination of the blaOXA-23 carbapenemase gene of Acinetobacter baumannii. . Emerg Infect Dis 16:, 35–40. [CrossRef][PubMed]
    [Google Scholar]
  16. Nemec A., Dijkshoorn L., Jezek P.. ( 2000;). Recognition of two novel phenons of the genus Acinetobacter among non-glucose-acidifying isolates from human specimens. . J Clin Microbiol 38:, 3937–3941.[PubMed]
    [Google Scholar]
  17. Nemec A., De Baere T., Tjernberg I., Vaneechoutte M., van der Reijden T. J. K., Dijkshoorn L.. ( 2001;). Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens. . Int J Syst Evol Microbiol 51:, 1891–1899. [CrossRef][PubMed]
    [Google Scholar]
  18. Nemec A., Musílek M., Maixnerová M., De Baere T., van der Reijden T. J. K., Vaneechoutte M., Dijkshoorn L.. ( 2009;). Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. . Int J Syst Evol Microbiol 59:, 118–124. [CrossRef][PubMed]
    [Google Scholar]
  19. Nemec A., Musílek M., Sedo O., De Baere T., Maixnerová M., van der Reijden T. J. K., Zdráhal Z., Vaneechoutte M., Dijkshoorn L.. ( 2010;). Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively. . Int J Syst Evol Microbiol 60:, 896–903. [CrossRef][PubMed]
    [Google Scholar]
  20. Nemec A., Krizova L., Maixnerova M., van der Reijden T. J. K., Deschaght P., Passet V., Vaneechoutte M., Brisse S., Dijkshoorn L.. ( 2011;). Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). . Res Microbiol 162:, 393–404. [CrossRef][PubMed]
    [Google Scholar]
  21. Périchon B., Goussard S., Walewski V., Krizova L., Cerqueira G., Murphy C., Feldgarden M., Wortman J., Clermont D.. & other authors ( 2014;). Identification of 50 class D β-lactamases and 65 Acinetobacter-derived cephalosporinases in Acinetobacter spp.. Antimicrob Agents Chemother 58:, 936–949. [CrossRef][PubMed]
    [Google Scholar]
  22. Poirel L., Nordmann P.. ( 2006;). Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. . Clin Microbiol Infect 12:, 826–836. [CrossRef][PubMed]
    [Google Scholar]
  23. Poirel L., Berçot B., Millemann Y., Bonnin R. A., Pannaux G., Nordmann P.. ( 2012;). Carbapenemase-producing Acinetobacter spp. in cattle, France. . Emerg Infect Dis 18:, 523–525. [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  25. Smet A., Boyen F., Pasmans F., Butaye P., Martens A., Nemec A., Deschaght P., Vaneechoutte M., Haesebrouck F.. ( 2012;). OXA-23-producing Acinetobacter species from horses: a public health hazard?. J Antimicrob Chemother 67:, 3009–3010. [CrossRef][PubMed]
    [Google Scholar]
  26. Tamura K., Nei M., Kumar S.. ( 2004;). Prospects for inferring very large phylogenies by using the neighbor-joining method. . Proc Natl Acad Sci U S A 101:, 11030–11035. [CrossRef][PubMed]
    [Google Scholar]
  27. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  28. Vaneechoutte M., Devriese L. A., Dijkshoorn L., Lamote B., Deprez P., Verschraegen G., Haesebrouck F.. ( 2000;). Acinetobacter baumannii-infected vascular catheters collected from horses in an equine clinic. . J Clin Microbiol 38:, 4280–4281.[PubMed]
    [Google Scholar]
  29. Vaneechoutte M., Dijkshoorn L., Nemec A., Kämpfer P., Wauters G.. ( 2011;). Acinetobacter, Chryseobacterium, Moraxella, and Other Nonfermentative Gram-Negative Rods. . In Manual of Clinical Microbiology, , 10th edn., pp. 714–738. Edited by Versalovic J., Carroll K. C., Funke G., Jorgensen J. H., Landry M. L., Warnock D. W... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  30. Vaz-Moreira I., Novo A., Hantsis-Zacharov E., Lopes A. R., Gomila M., Nunes O. C., Manaia C. M., Halpern M.. ( 2011;). Acinetobacter rudis sp. nov., isolated from raw milk and raw wastewater. . Int J Syst Evol Microbiol 61:, 2837–2843. [CrossRef][PubMed]
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  32. Wilson K.. ( 1987;). Preparation of genomic DNA from bacteria. . In Current Protocols in Molecular Biology, pp. 241–245. Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K... New York:: Greene Publishing and Wiley Interscience;.
    [Google Scholar]
  33. Zander E., Fernández-González A., Schleicher X., Dammhayn C., Kamolvit W., Seifert H., Higgins P. G.. ( 2014;). Worldwide dissemination of acquired carbapenem-hydrolysing class D β-lactamases in Acinetobacter spp. other than Acinetobacter baumannii. . Int J Antimicrob Agents 43, 375–377. [CrossRef][PubMed]
    [Google Scholar]
  34. Zhou Z., Du X., Wang L., Yang Q., Fu Y., Yu Y.. ( 2011;). Clinical carbapenem-resistant Acinetobacter baylyi strain coharboring blaSIM-1 and blaOXA-23 from China. . Antimicrob Agents Chemother 55:, 5347–5349. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.068791-0
Loading
/content/journal/ijsem/10.1099/ijs.0.068791-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error