1887

Abstract

Four strains of Gram-staining-positive, anaerobic rods were isolated from the faeces of western lowland gorillas (). Three strains, KZ01, KZ02 and KZ03, were isolated at the Kyoto City Zoo, Japan, and one strain, GG02, was isolated in the Moukalaba-Doudou National Park, Gabon. These strains were investigated taxonomically. These strains belonged to the phylogenetic group according to phylogenetic analysis based on 16S rRNA gene sequences and specific phenotypic characteristics. Phylogenetic analysis of their 16S rRNA gene sequences revealed that strains KZ01, KZ02, KZ03 and GG02 formed a single monophyletic cluster and had a distinct line of descent. Based on sequence similarity of the 16S rRNA gene, JCM 1173 (96.6 %) was the closest neighbour to these novel strains, although it was clear that these strains belonged to a different species. Partial sequences also supported these relationships. DNA–DNA relatedness between strain KZ01 and JCM 1173 was less than 22 % and the DNA G+C content of strain KZ01 was 50.7 mol%. The cell-wall peptidoglycan type was A4β (-Orn–-Asp) and the major fatty acids were C, Cω9 and C cyclo 9,10. Therefore, based on phylogenetic, phenotypic and physiological evidence, these strains represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is KZ01 ( = JCM 19575 = DSM 28356).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.068429-0
2014-12-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/12/4001.html?itemId=/content/journal/ijsem/10.1099/ijs.0.068429-0&mimeType=html&fmt=ahah

References

  1. Ahmed I., Kudo T., Abbas S., Ehsan M., Iino T., Fujiwara T., Ohkuma M.. ( 2014;). Cellulomonas pakistanensis sp. nov., a moderately halotolerant actinobacteria. . Int J Syst Evol Microbiol 64:, 2305–2311. [CrossRef][PubMed]
    [Google Scholar]
  2. Dellaglio F., Torriani S., Felis G. E.. ( 2004;). Reclassification of Lactobacillus cellobiosus Rogosa et al. 1953 as a later synonym of Lactobacillus fermentum Beijerinck 1901. . Int J Syst Evol Microbiol 54:, 809–812. [CrossRef][PubMed]
    [Google Scholar]
  3. Endo A., Futagawa-Endo Y., Dicks L. M.. ( 2010;). Diversity of Lactobacillus and Bifidobacterium in feces of herbivores, omnivores and carnivores. . Anaerobe 16:, 590–596. [CrossRef][PubMed]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane-filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  5. Hammes W. P., Hertel C.. ( 2009;). Genus I. Lactobacillus Beijerinck 1901, 212AL. . In Bergey’s Mannual of Systematic Bacteriology, , 2nd edn., vol. 3, pp. 465–511. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  6. Irisawa T., Tanaka N., Kitahara M., Sakamoto M., Ohkuma M., Okada S.. ( 2014;). Lactobacillus furfuricola sp. nov., isolated from Nukadoko, rice bran paste for Japanese pickles. . Int J Syst Evol Microbiol 64:, 2902–2906. [CrossRef][PubMed]
    [Google Scholar]
  7. Kawamoto I., Oka T., Nara T.. ( 1981;). Cell wall composition of Micromonospora olivoasterospora, Micromonospora sagamiensis, and related organisms. . J Bacteriol 146:, 527–534.[PubMed]
    [Google Scholar]
  8. Killer J., Havlík J., Vlková E., Rada V., Pechar R., Benada O., Kopečný J., Kofroňová O., Sechovcová H.. ( 2014;). Lactobacillus rodentium sp. nov., from the digestive tract of wild rodents. . Int J Syst Evol Microbiol 64:, 1526–1533. [CrossRef][PubMed]
    [Google Scholar]
  9. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  10. Kitahara M., Sakamoto M., Ike M., Sakata S., Benno Y.. ( 2005;). Bacteroides plebeius sp. nov. and Bacteroides coprocola sp. nov., isolated from human faeces. . Int J Syst Evol Microbiol 55:, 2143–2147. [CrossRef][PubMed]
    [Google Scholar]
  11. Mattarelli P., Holzapfel W., Franz C. M., Endo A., Felis G. E., Hammes W., Pot B., Dicks L., Dellaglio F.. ( 2014;). Recommended minimal standards for description of new taxa of the genera Bifidobacterium, Lactobacillus and related genera. . Int J Syst Evol Microbiol 64:, 1434–1451. [CrossRef][PubMed]
    [Google Scholar]
  12. Mitsuoka T., Kaneuchi C.. ( 1977;). Ecology of the bifidobacteria. . Am J Clin Nutr 30:, 1799–1810.[PubMed]
    [Google Scholar]
  13. Naser S. M., Thompson F. L., Hoste B., Gevers D., Dawyndt P., Vancanneyt M., Swings J.. ( 2005;). Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. . Microbiology 151:, 2141–2150. [CrossRef][PubMed]
    [Google Scholar]
  14. Olofsson T. C., Alsterfjord M., Nilson B., Butler E., Vásquez A.. ( 2014;). Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. . Int J Syst Evol Microbiol 64:, 3109–3119. [CrossRef][PubMed]
    [Google Scholar]
  15. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  16. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  17. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  18. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  19. Tsuchida S., Takahashi S., Nguema P. P., Fujita S., Kitahara M., Yamagiwa J., Ngomanda A., Ohkuma M., Ushida K.. ( 2014;). Bifidobacterium moukalabense sp. nov., isolated from the faeces of wild west lowland gorilla (Gorilla gorilla gorilla). . Int J Syst Evol Microbiol 64:, 449–455. [CrossRef][PubMed]
    [Google Scholar]
  20. Tsukahara T., Ushida K.. ( 2002;). Succinate accumulation in pig large intestine during antibiotic-associated diarrhea and the constitution of succinate-producing flora. . J Gen Appl Microbiol 48:, 143–154. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.068429-0
Loading
/content/journal/ijsem/10.1099/ijs.0.068429-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error