1887

Abstract

A Gram-negative, rod-shaped and motile bacterial isolate, designated strain NS9, isolated from air of the Sainsbury Centre for Visual Arts in Norwich, UK, was subjected to a polyphasic taxonomic study including phylogenetic analyses based on partial 16S rRNA, and gene sequences and phenotypic characterization. The 16S rRNA gene sequence of NS9 identified CCUG 38318, 5516S-1 (both 97.7 % similarity), 5516S-11 (97.4 %) and TS3 (97.4 %) as the next closest relatives. In partial and sequences, NS9 shared the highest similarities with CCUG 38318 (94.5 %) and 5516-11 (94.3 %), respectively. These sequence data demonstrate the affiliation of NS9 to the genus . The detection of the predominant ubiquinone Q-8, a polar lipid profile consisting of the major compounds diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol and a polyamine pattern containing 2-hydroxyputrescine and putrescine were in agreement with the assignment of strain NS9 to the genus . Major fatty acids were summed feature 3 (Cω7 and/or iso-C 2-OH), C, Cω7 and C 3-OH. Dissimilarities in partial and gene sequences as well as results from DNA–DNA hybridizations demonstrate that strain NS9 is a representative of an as-yet undescribed species of the genus that is also distinguished from its close relatives based on physiological and biochemical traits. Hence, we describe a novel species, for which we propose the name sp. nov., with the type strain NS9 ( = CCUG 65457 = LMG 28164).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.068296-0
2015-01-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/1/56.html?itemId=/content/journal/ijsem/10.1099/ijs.0.068296-0&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J.. ( 1996;). Classification of bacteria isolated from a medieval wall painting. . J Biotechnol 47:, 39–52. [CrossRef]
    [Google Scholar]
  2. Busse H.-J.. ( 2011;). Polyamines. . Methods Microbiol 38:, 239–259. [CrossRef]
    [Google Scholar]
  3. Busse H.-J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  4. Busse H.-J., Bunka S., Hensel A., Lubitz W.. ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47:, 698–708. [CrossRef]
    [Google Scholar]
  5. Du Y., Yu X., Wang G.. ( 2012;). Massilia tieshanensis sp. nov., isolated from mining soil. . Int J Syst Evol Microbiol 62:, 2356–2362. [CrossRef][PubMed]
    [Google Scholar]
  6. Gallego V., Sánchez-Porro C., García M. T., Ventosa A.. ( 2006;). Massilia aurea sp. nov., isolated from drinking water. . Int J Syst Evol Microbiol 56:, 2449–2453. [CrossRef][PubMed]
    [Google Scholar]
  7. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  8. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  9. Kämpfer P.. ( 1990;). Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae. . Zentralbl Bakteriol 273:, 164–172. [CrossRef][PubMed]
    [Google Scholar]
  10. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  11. Kämpfer P., Steiof M., Dott W.. ( 1991;). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef][PubMed]
    [Google Scholar]
  12. Kämpfer P., Falsen E., Busse H.-J.. ( 2008;). Naxibacter varians sp. nov. and Naxibacter haematophilus sp. nov., and emended description of the genus Naxibacter. . Int J Syst Evol Microbiol 58:, 1680–1684. [CrossRef][PubMed]
    [Google Scholar]
  13. Kämpfer P., Lodders N., Martin K., Falsen E.. ( 2011;). Revision of the genus Massilia La Scola et al. 2000, with an emended description of the genus and inclusion of all species of the genus Naxibacter as new combinations, and proposal of Massilia consociata sp. nov.. Int J Syst Evol Microbiol 61:, 1528–1533. [CrossRef][PubMed]
    [Google Scholar]
  14. Kämpfer P., Lodders N., Martin K., Falsen E.. ( 2012;). Massilia oculi sp. nov., isolated from a human clinical specimen. . Int J Syst Evol Microbiol 62:, 364–369. [CrossRef][PubMed]
    [Google Scholar]
  15. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  16. Kim M., Oh H.-S., Park S.-C., Chun J.. ( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. . Int J Syst Evol Microbiol 64:, 346–351. [CrossRef][PubMed]
    [Google Scholar]
  17. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  18. Kong B.-H., Li Y.-H., Liu M., Liu Y., Li C.-L., Liu L., Yang Z.-W., Yu R.. ( 2013;). Massilia namucuonensis sp. nov., isolated from a soil sample. . Int J Syst Evol Microbiol 63:, 352–357. [CrossRef][PubMed]
    [Google Scholar]
  19. La Scola B., Birtles R. J., Mallet M. N., Raoult D.. ( 1998;). Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. . J Clin Microbiol 36:, 2847–2852.[PubMed]
    [Google Scholar]
  20. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  21. Lindquist D., Murrill D., Burran W. P., Winans G., Janda J. M., Probert W.. ( 2003;). Characteristics of Massilia timonae and Massilia timonae-like isolates from human patients, with an emended description of the species. . J Clin Microbiol 41:, 192–196. [CrossRef][PubMed]
    [Google Scholar]
  22. Luo X., Xie Q., Wang J., Pang H., Fan J., Zhang J.. ( 2013;). Massilia lurida sp. nov., isolated from soil. . Int J Syst Evol Microbiol 63:, 2118–2123. [CrossRef][PubMed]
    [Google Scholar]
  23. Rodríguez-Díaz M., Cerrone F., Sánchez-Peinado M., SantaCruz-Calvo L., Pozo C., López J. G.. ( 2014;). Massilia umbonata sp. nov., able to accumulate poly-β-hydroxybutyrate, isolated from a sewage sludge compost-soil microcosm. . Int J Syst Evol Microbiol 64:, 131–137. [CrossRef][PubMed]
    [Google Scholar]
  24. Shen L., Liu Y., Wang N., Yao T., Jiao N., Liu H., Zhou Y., Xu B., Liu X.. ( 2013;). Massilia yuzhufengensis sp. nov., isolated from an ice core. . Int J Syst Evol Microbiol 63:, 1285–1290. [CrossRef][PubMed]
    [Google Scholar]
  25. Stolz A., Busse H.-J., Kämpfer P.. ( 2007;). Pseudomonas knackmussii sp. nov.. Int J Syst Evol Microbiol 57:, 572–576. [CrossRef][PubMed]
    [Google Scholar]
  26. Tamura K., Nei M.. ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10:, 512–526.[PubMed]
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  29. Tindall B. J.. ( 1990a;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  30. Tindall B. J.. ( 1990b;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  31. Wang J.-W., Zhang J.-L., Pang H., Zhang Y.-B., Li Y.-Y., Fan J.-P.. ( 2012;). Massilia flava sp. nov., isolated from soil. . Int J Syst Evol Microbiol 62:, 580–585. [CrossRef][PubMed]
    [Google Scholar]
  32. Weon H.-Y., Kim B.-Y., Son J.-A., Jang H. B., Hong S. K., Go S.-J., Kwon S.-W.. ( 2008;). Massilia aerilata sp. nov., isolated from an air sample. . Int J Syst Evol Microbiol 58:, 1422–1425. [CrossRef][PubMed]
    [Google Scholar]
  33. Weon H.-Y., Kim B.-Y., Hong S.-B., Jeon Y.-A., Koo B.-S., Kwon S.-W., Stackebrandt E.. ( 2009;). Massilia niabensis sp. nov. and Massilia niastensis sp. nov., isolated from air samples. . Int J Syst Evol Microbiol 59:, 1656–1660. [CrossRef][PubMed]
    [Google Scholar]
  34. Weon H.-Y., Yoo S.-H., Kim S.-J., Kim Y.-S., Anandham R., Kwon S.-W.. ( 2010;). Massilia jejuensis sp. nov. and Naxibacter suwonensis sp. nov., isolated from air samples. . Int J Syst Evol Microbiol 60:, 1938–1943. [CrossRef][PubMed]
    [Google Scholar]
  35. Xu P., Li W.-J., Tang S.-K., Zhang Y.-Q., Chen G.-Z., Chen H.-H., Xu L.-H., Jiang C.-L.. ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. . Int J Syst Evol Microbiol 55:, 1149–1153. [CrossRef][PubMed]
    [Google Scholar]
  36. Zhang Y. Q., Li W.-J., Zhang K.-Y., Tian X.-P., Jiang Y., Xu L.-H., Jiang C.-L., Lai R.. ( 2006;). Massilia dura sp. nov., Massilia albidiflava sp. nov., Massilia plicata sp. nov. and Massilia lutea sp. nov., isolated from soils in China. . Int J Syst Evol Microbiol 56:, 459–463. [CrossRef][PubMed]
    [Google Scholar]
  37. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R.. ( 1998;). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:, 179–186. [CrossRef][PubMed]
    [Google Scholar]
  38. Zul D., Wanner G., Overmann J.. ( 2008;). Massilia brevitalea sp. nov., a novel betaproteobacterium isolated from lysimeter soil. . Int J Syst Evol Microbiol 58:, 1245–1251. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.068296-0
Loading
/content/journal/ijsem/10.1099/ijs.0.068296-0
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error