1887

Abstract

An anaerobic, psychrophilic bacterium, strain MO-SPC2, was isolated from a methanogenic microbial community in a continuous-flow bioreactor that was established from subseafloor sediments collected from off the Shimokita Peninsula of Japan in the north-western Pacific Ocean. Cells were pleomorphic: spherical, annular, curved rod, helical and coccoid cell morphologies were observed. Motility only occurred in helical cells. Strain MO-SPC2 grew at 0–17 °C (optimally at 9 °C), at pH 6.0–8.0 (optimally at pH 6.8–7.2) and in 20–40 g NaCl l (optimally at 20–30 NaCl l). The strain grew chemo-organotrophically with mono-, di- and polysaccharides. The major end products of glucose fermentation were acetate, ethanol, hydrogen and carbon dioxide. The abundant polar lipids of strain MO-SPC2 were phosphatidylglycolipids, phospholipids and glycolipids. The major cellular fatty acids were C, C and Cω9. Isoprenoid quinones were not detected. The G+C content of the DNA was 32.3 mol%. 16S rRNA gene-based phylogenetic analysis showed that strain MO-SPC2 was affiliated with the genus within the phylum , and its closest relatives were Grapes (88.4 % sequence identity), Buddy (86.7 %) and SPN1 (85.4 %). Based on phenotypic characteristics and phylogenetic traits, strain MO-SPC2 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MO-SPC2 ( = JCM 17281 = DSM 23952). An emended description of the genus is also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.068148-0
2014-12-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/12/4147.html?itemId=/content/journal/ijsem/10.1099/ijs.0.068148-0&mimeType=html&fmt=ahah

References

  1. Abt B., Han C., Scheuner C., Lu M., Lapidus A., Nolan M., Lucas S., Hammon N., Deshpande S.. & other authors ( 2012;). Complete genome sequence of the termite hindgut bacterium Spirochaeta coccoides type strain (SPN1T), reclassification in the genus Sphaerochaeta as Sphaerochaeta coccoides comb. nov. and emendations of the family Spirochaetaceae and the genus Sphaerochaeta. . Stand Genomic Sci 6:, 194–209. [CrossRef][PubMed]
    [Google Scholar]
  2. Acosta-González A., Rosselló-Móra R., Marqués S.. ( 2013;). Characterization of the anaerobic microbial community in oil-polluted subtidal sediments: aromatic biodegradation potential after the Prestige oil spill. . Environ Microbiol 15:, 77–92. [CrossRef][PubMed]
    [Google Scholar]
  3. Barrow G. I., Feltham R. K. A.. ( 1993;). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. New York:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  4. Briones A. M., Daugherty B. J., Angenent L. T., Rausch K. D., Tumbleson M. E., Raskin L.. ( 2007;). Microbial diversity and dynamics in multi- and single-compartment anaerobic bioreactors processing sulfate-rich waste streams. . Environ Microbiol 9:, 93–106. [CrossRef][PubMed]
    [Google Scholar]
  5. Caro-Quintero A., Ritalahti K. M., Cusick K. D., Löffler F. E., Konstantinidis K. T.. ( 2012;). The chimeric genome of Sphaerochaeta: nonspiral spirochetes that break with the prevalent dogma in spirochete biology. . MBio 3:, e00025-e12. [CrossRef][PubMed]
    [Google Scholar]
  6. Charon N. W., Goldstein S. F.. ( 2002;). Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. . Annu Rev Genet 36:, 47–73. [CrossRef][PubMed]
    [Google Scholar]
  7. Charon N. W., Cockburn A., Li C., Liu J., Miller K. A., Miller M. R., Motaleb M. A., Wolgemuth C. W.. ( 2012;). The unique paradigm of spirochete motility and chemotaxis. . Annu Rev Microbiol 66:, 349–370. [CrossRef][PubMed]
    [Google Scholar]
  8. Christie W. W.. ( 1997;). Structural analysis of fatty acids. . In Advances in Lipid Methodology, vol. 4, pp. 119–169. Edited by Christie W. W... Dundee:: Oily Press;. [CrossRef]
    [Google Scholar]
  9. Chung J., Krajmalnik-Brown R., Rittmann B. E.. ( 2008;). Bioreduction of trichloroethene using a hydrogen-based membrane biofilm reactor. . Environ Sci Technol 42:, 477–483. [CrossRef][PubMed]
    [Google Scholar]
  10. Doetsch R. N.. ( 1981;). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 21–33. Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. H... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  11. Dröge S., Fröhlich J., Radek R., König H.. ( 2006;). Spirochaeta coccoides sp. nov., a novel coccoid spirochete from the hindgut of the termite Neotermes castaneus. . Appl Environ Microbiol 72:, 392–397. [CrossRef][PubMed]
    [Google Scholar]
  12. Fernandez A. S., Hashsham S. A., Dollhopf S. L., Raskin L., Glagoleva O., Dazzo F. B., Hickey R. F., Criddle C. S., Tiedje J. M.. ( 2000;). Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. . Appl Environ Microbiol 66:, 4058–4067. [CrossRef][PubMed]
    [Google Scholar]
  13. Franzmann P. D., Dobson S. J.. ( 1992;). Cell wall-less, free-living spirochetes in Antarctica. . FEMS Microbiol Lett 97:, 289–291. [CrossRef][PubMed]
    [Google Scholar]
  14. Franzmann P., Rohde M.. ( 1992;). Characteristics of a novel, anaerobic, mycoplasma-like bacterium from Ace Lake, Antarctica. . Antarct Sci 4:, 155–162. [CrossRef]
    [Google Scholar]
  15. Grabowski A., Nercessian O., Fayolle F., Blanchet D., Jeanthon C.. ( 2005;). Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. . FEMS Microbiol Ecol 54:, 427–443. [CrossRef][PubMed]
    [Google Scholar]
  16. Gu A. Z., Hedlund B. P., Staley J. T., Strand S. E., Stensel H. D.. ( 2004;). Analysis and comparison of the microbial community structures of two enrichment cultures capable of reductively dechlorinating TCE and cis-DCE. . Environ Microbiol 6:, 45–54. [CrossRef][PubMed]
    [Google Scholar]
  17. Imachi H., Sekiguchi Y., Kamagata Y., Loy A., Qiu Y.-L., Hugenholtz P., Kimura N., Wagner M., Ohashi A., Harada H.. ( 2006;). Non-sulfate-reducing, syntrophic bacteria affiliated with Desulfotomaculum cluster I are widely distributed in methanogenic environments. . Appl Environ Microbiol 72:, 2080–2091. [CrossRef][PubMed]
    [Google Scholar]
  18. Imachi H., Sakai S., Hirayama H., Nakagawa S., Nunoura T., Takai K., Horikoshi K.. ( 2008;). Exilispira thermophila gen. nov., sp. nov., an anaerobic, thermophilic spirochaete isolated from a deep-sea hydrothermal vent chimney. . Int J Syst Evol Microbiol 58:, 2258–2265. [CrossRef][PubMed]
    [Google Scholar]
  19. Imachi H., Sakai S., Nagai H., Yamaguchi T., Takai K.. ( 2009;). Methanofollis ethanolicus sp. nov., an ethanol-utilizing methanogen isolated from a lotus field. . Int J Syst Evol Microbiol 59:, 800–805. [CrossRef][PubMed]
    [Google Scholar]
  20. Imachi H., Aoi K., Tasumi E., Saito Y., Yamanaka Y., Saito Y., Yamaguchi T., Tomaru H., Takeuchi R.. & other authors ( 2011;). Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor. . ISME J 5:, 1913–1925. [CrossRef][PubMed]
    [Google Scholar]
  21. Kato S., Itoh T., Yamagishi A.. ( 2011;). Archaeal diversity in a terrestrial acidic spring field revealed by a novel PCR primer targeting archaeal 16S rRNA genes. . FEMS Microbiol Lett 319:, 34–43. [CrossRef][PubMed]
    [Google Scholar]
  22. Kobayashi H., Endo K., Sakata S., Mayumi D., Kawaguchi H., Ikarashi M., Miyagawa Y., Maeda H., Sato K.. ( 2012;). Phylogenetic diversity of microbial communities associated with the crude-oil, large-insoluble-particle and formation-water components of the reservoir fluid from a non-flooded high-temperature petroleum reservoir. . J Biosci Bioeng 113:, 204–210. [CrossRef][PubMed]
    [Google Scholar]
  23. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  24. Leser T. D., Amenuvor J. Z., Jensen T. K., Lindecrona R. H., Boye M., Møller K.. ( 2002;). Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. . Appl Environ Microbiol 68:, 673–690. [CrossRef][PubMed]
    [Google Scholar]
  25. Ley R. E., Hamady M., Lozupone C., Turnbaugh P. J., Ramey R. R., Bircher J. S., Schlegel M. L., Tucker T. A., Schrenzel M. D.. & other authors ( 2008;). Evolution of mammals and their gut microbes. . Science 320:, 1647–1651. [CrossRef][PubMed]
    [Google Scholar]
  26. Liu J., Wu W., Chen C., Sun F., Chen Y.. ( 2011;). Prokaryotic diversity, composition structure, and phylogenetic analysis of microbial communities in leachate sediment ecosystems. . Appl Microbiol Biotechnol 91:, 1659–1675. [CrossRef][PubMed]
    [Google Scholar]
  27. MIDI ( 1999;). Sherlock, Microbial Identification System, Operating Manual, version 3.0. Newark, DE:: MIDI, Inc;.
    [Google Scholar]
  28. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H.. ( 1984;). An integrated procedure for extracting bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  29. Miyashita A., Mochimaru H., Kazama H., Ohashi A., Yamaguchi T., Nunoura T., Horikoshi K., Takai K., Imachi H.. ( 2009;). Development of 16S rRNA gene-targeted primers for detection of archaeal anaerobic methanotrophs (ANMEs). . FEMS Microbiol Lett 297:, 31–37. [CrossRef][PubMed]
    [Google Scholar]
  30. Murray A. E., Kenig F., Fritsen C. H., McKay C. P., Cawley K. M., Edwards R., Kuhn E., McKnight D. M., Ostrom N. E.. & other authors ( 2012;). Microbial life at −13 °C in the brine of an ice-sealed Antarctic lake. . Proc Natl Acad Sci U S A 109:, 20626–20631. [CrossRef][PubMed]
    [Google Scholar]
  31. Ritalahti K. M., Justicia-Leon S. D., Cusick K. D., Ramos-Hernandez N., Rubin M., Dornbush J., Löffler F. E.. ( 2012;). Sphaerochaeta globosa gen. nov., sp. nov. and Sphaerochaeta pleomorpha sp. nov., free-living, spherical spirochaetes. . Int J Syst Evol Microbiol 62:, 210–216. [CrossRef][PubMed]
    [Google Scholar]
  32. Rivière D., Desvignes V., Pelletier E., Chaussonnerie S., Guermazi S., Weissenbach J., Li T., Camacho P., Sghir A.. ( 2009;). Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. . ISME J 3:, 700–714. [CrossRef][PubMed]
    [Google Scholar]
  33. Scupham A. J., Jones J. A., Rettedal E. A., Weber T. E.. ( 2010;). Antibiotic manipulation of intestinal microbiota to identify microbes associated with Campylobacter jejuni exclusion in poultry. . Appl Environ Microbiol 76:, 8026–8032. [CrossRef][PubMed]
    [Google Scholar]
  34. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  35. Toffin L., Webster G., Weightman A. J., Fry J. C., Prieur D.. ( 2004;). Molecular monitoring of culturable bacteria from deep-sea sediment of the Nankai Trough, Leg 190 Ocean Drilling Program. . FEMS Microbiol Ecol 48:, 357–367. [CrossRef][PubMed]
    [Google Scholar]
  36. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  37. Zillig W., Holz I., Janekovic D., Klenk H.-P., Imsel E., Trent J., Wunderl S., Forjaz V. H., Coutinho R., Ferreira T.. ( 1990;). Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. . J Bacteriol 172:, 3959–3965.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.068148-0
Loading
/content/journal/ijsem/10.1099/ijs.0.068148-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error