1887

Abstract

In the frame of a bumble bee gut microbiota study, acetic acid bacteria (AAB) were isolated using a combination of direct isolation methods and enrichment procedures. MALDI-TOF MS profiling of the isolates and a comparison of these profiles with profiles of established AAB species identified most isolates as or as ‘, except for two isolates (R-52486 and LMG 28161) that showed an identical profile. A nearly complete 16S rRNA gene sequence of strain LMG 28161 was determined and showed the highest pairwise similarity to S-877 (96.5 %), which corresponded with genus level divergence in the family . Isolate LMG 28161 was subjected to whole-genome shotgun sequencing; a 16S–23S rRNA internal transcribed spacer (ITS) sequence as well as partial sequences of the housekeeping genes , and were extracted for phylogenetic analyses. The obtained data confirmed that this isolate is best classified into a new genus in the family . The DNA G+C content of strain LMG 28161 was 54.9 mol%. The fatty acid compositions of isolates R-52486 and LMG 28161 were similar to those of established AAB species [with Cω7 (43.1 %) as the major component], but the amounts of fatty acids such as C cyclo ω8, C and C 2-OH enabled to differentiate them. The major ubiquinone was Q-10. Both isolates could also be differentiated from the known genera of AAB by means of biochemical characteristics, such as their inability to oxidize ethanol to acetic acid, negligible acid production from melibiose, and notable acid production from -fructose, sucrose and -mannitol. In addition, they produced 2-keto--gluconate, but not 5-keto--gluconate from -glucose. Therefore, the name gen nov., sp. nov. is proposed for this new taxon, with LMG 28161 ( = DSM 28636 = R-52487) as the type strain of the type species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.068049-0
2015-01-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/1/267.html?itemId=/content/journal/ijsem/10.1099/ijs.0.068049-0&mimeType=html&fmt=ahah

References

  1. Anderson K. E., Sheehan T. H., Mott B. M., Maes P., Snyder L., Schwan M. R., Walton A., Jones B. M., Corby-Harris V.. ( 2013;). Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). . PLoS ONE 8:, e83125. [CrossRef][PubMed]
    [Google Scholar]
  2. Asai T., Iizuka H., Komagata K.. ( 1964;). The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to existence of intermediate strains. . J Gen Appl Microbiol 10:, 95–126. [CrossRef]
    [Google Scholar]
  3. Babendreier D., Joller D., Romeis J., Bigler F., Widmer F.. ( 2007;). Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. . FEMS Microbiol Ecol 59:, 600–610. [CrossRef][PubMed]
    [Google Scholar]
  4. Cariveau D. P., Elijah Powell J., Koch H., Winfree R., Moran N. A.. ( 2014;). Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). . ISME J (in press). [CrossRef][PubMed]
    [Google Scholar]
  5. Cleenwerck I., De Vos P.. ( 2008;). Polyphasic taxonomy of acetic acid bacteria: an overview of the currently applied methodology. . Int J Food Microbiol 125:, 2–14. [CrossRef][PubMed]
    [Google Scholar]
  6. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J.. ( 2002;). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov.. Int J Syst Evol Microbiol 52:, 1551–1558. [CrossRef][PubMed]
    [Google Scholar]
  7. Cleenwerck I., Camu N., Engelbeen K., De Winter T., Vandemeulebroecke K., De Vos P., De Vuyst L.. ( 2007;). Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. . Int J Syst Evol Microbiol 57:, 1647–1652. [CrossRef][PubMed]
    [Google Scholar]
  8. Cleenwerck I., Gonzalez A., Camu N., Engelbeen K., De Vos P., De Vuyst L.. ( 2008;). Acetobacter fabarum sp. nov., an acetic acid bacterium from a Ghanaian cocoa bean heap fermentation. . Int J Syst Evol Microbiol 58:, 2180–2185. [CrossRef][PubMed]
    [Google Scholar]
  9. Cleenwerck I., De Vos P., De Vuyst L.. ( 2010;). Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov. . Int J Syst Evol Microbiol 60:, 2277–2283. [CrossRef][PubMed]
    [Google Scholar]
  10. Crotti E., Damiani C., Pajoro M., Gonella E., Rizzi A., Ricci I., Negri I., Scuppa P., Rossi P.. & other authors ( 2009;). Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders. . Environ Microbiol 11:, 3252–3264. [CrossRef][PubMed]
    [Google Scholar]
  11. Crotti E., Rizzi A., Chouaia B., Ricci I., Favia G., Alma A., Sacchi L., Bourtzis K., Mandrioli M.. & other authors ( 2010;). Acetic acid bacteria, newly emerging symbionts of insects. . Appl Environ Microbiol 76:, 6963–6970. [CrossRef][PubMed]
    [Google Scholar]
  12. De Vuyst L., Camu N., De Winter T., Vandemeulebroecke K., Van de Perre V., Vancanneyt M., De Vos P., Cleenwerck I.. ( 2008;). Validation of the (GTG)(5)-rep-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. . Int J Food Microbiol 125:, 79–90. [CrossRef][PubMed]
    [Google Scholar]
  13. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  14. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  15. Gilliam M.. ( 1997;). Identification and roles of non-pathogenic microflora associated with honey bees. . FEMS Microbiol Lett 155:, 1–10. [CrossRef]
    [Google Scholar]
  16. Greenberg D. E., Porcella S. F., Stock F., Wong A., Conville P. S., Murray P. R., Holland S. M., Zelazny A. M.. ( 2006;). Granulibacter bethesdensis gen. nov., sp. nov., a distinctive pathogenic acetic acid bacterium in the family Acetobacteraceae. . Int J Syst Evol Microbiol 56:, 2609–2616. [CrossRef][PubMed]
    [Google Scholar]
  17. Jojima Y., Mihara Y., Suzuki S., Yokozeki K., Yamanaka S., Fudou R.. ( 2004;). Saccharibacter floricola gen. nov., sp. nov., a novel osmophilic acetic acid bacterium isolated from pollen. . Int J Syst Evol Microbiol 54:, 2263–2267. [CrossRef][PubMed]
    [Google Scholar]
  18. Kersters K., Lisdiyanti P., Komagata K., Swings J.. ( 2006;). The family Acetobacteraceae: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. . In The Prokaryotes, pp. 163–200. Edited by Dworkin S. F. M., Rosenberg E., Schleifer K.-H., Stackebrandt E... New York:: Springer;. [CrossRef]
    [Google Scholar]
  19. Koch H., Schmid-Hempel P.. ( 2011;). Bacterial communities in central European bumblebees: low diversity and high specificity. . Microb Ecol 62:, 121–133. [CrossRef][PubMed]
    [Google Scholar]
  20. Koch H., Abrol D. P., Li J., Schmid-Hempel P.. ( 2013;). Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. . Mol Ecol 22:, 2028–2044. [CrossRef][PubMed]
    [Google Scholar]
  21. Li L., Wieme A., Spitaels F., Balzarini T., Nunes O. C., Manaia C. M., Van Landschoot A., De Vuyst L., Cleenwerck I., Vandamme P.. ( 2014;). Acetobacter sicerae sp. nov., isolated from cider and kefir, and identification of species of the genus Acetobacter by dnaK, groEL and rpoB sequence analysis. . Int J Syst Evol Microbiol 64:, 2407–2415. [CrossRef][PubMed]
    [Google Scholar]
  22. Lisdiyanti P., Kawasaki H., Widyastuti Y., Saono S., Seki T., Yamada Y., Uchimura T., Komagata K.. ( 2002;). Kozakia baliensis gen. nov., sp. nov., a novel acetic acid bacterium in the alpha-proteobacteria. . Int J Syst Evol Microbiol 52:, 813–818. [CrossRef][PubMed]
    [Google Scholar]
  23. Lisdiyanti P., Katsura K., Potacharoen W., Navarro R. R., Yamada Y., Uchimura T., Komagata K.. ( 2003;). Diversity of acetic acid bacteria in Indonesia, Thailand, and the Philippines. . Microbiol Cult Collect 19:, 91–99.
    [Google Scholar]
  24. Malimas T., Chaipitakchonlatarn W., Thi Lan Vu H., Yukphan P., Muramatsu Y., Tanasupawat S., Potacharoen W., Nakagawa Y., Tanticharoen M., Yamada Y.. ( 2013;). Swingsia samuiensis gen. nov., sp. nov., an osmotolerant acetic acid bacterium in the α-Proteobacteria. . J Gen Appl Microbiol 59:, 375–384. [CrossRef][PubMed]
    [Google Scholar]
  25. Martinson V. G., Danforth B. N., Minckley R. L., Rueppell O., Tingek S., Moran N. A.. ( 2011;). A simple and distinctive microbiota associated with honey bees and bumble bees. . Mol Ecol 20:, 619–628. [CrossRef][PubMed]
    [Google Scholar]
  26. Mohr K. I., Tebbe C. C.. ( 2006;). Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. . Environ Microbiol 8:, 258–272. [CrossRef][PubMed]
    [Google Scholar]
  27. Mohr K. I., Tebbe C. C.. ( 2007;). Field study results on the probability and risk of a horizontal gene transfer from transgenic herbicide-resistant oilseed rape pollen to gut bacteria of bees. . Appl Microbiol Biotechnol 75:, 573–582. [CrossRef][PubMed]
    [Google Scholar]
  28. Muthukumarasamy R., Cleenwerck I., Revathi G., Vadivelu M., Janssens D., Hoste B., Gum K. U., Park K. D., Son C. Y.. & other authors ( 2005;). Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. . Syst Appl Microbiol 28:, 277–286. [CrossRef][PubMed]
    [Google Scholar]
  29. Nei M., Kumar S.. ( 2000;). Molecular Evolution and Phylogenetics. New York:: Oxford University Press;.
    [Google Scholar]
  30. Olofsson T. C., Vásquez A.. ( 2008;). Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. . Curr Microbiol 57:, 356–363. [CrossRef][PubMed]
    [Google Scholar]
  31. Olofsson T. C., Vásquez A.. ( 2009;). Phylogenetic comparison of bacteria isolated from the honey stomachs of honey bees Apis mellifera and bumble bees Bombus spp.. J Apic Res 48:, 233–237. [CrossRef]
    [Google Scholar]
  32. Papalexandratou Z., Lefeber T., Bahrim B., Lee O. S., Daniel H. M., De Vuyst L.. ( 2013;). Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa bean box fermentations, underlining the importance of these microbial species for a successful cocoa bean fermentation process. . Food Microbiol 35:, 73–85. [CrossRef][PubMed]
    [Google Scholar]
  33. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F. O.. ( 2013;). The silva ribosomal RNA gene database project: improved data processing and web-based tools. . Nucleic Acids Res 41: (Database issue), D590–D596. [CrossRef][PubMed]
    [Google Scholar]
  34. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  35. Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., Lesniewski R. A., Oakley B. B., Parks D. H.. & other authors ( 2009;). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. . Appl Environ Microbiol 75:, 7537–7541. [CrossRef][PubMed]
    [Google Scholar]
  36. Sievers M., Swings J.. ( 2005;). Family II: Acetobacteraceae Gillis and de Ley 1980, 23VP. . In Bergey’s Manual of Systematic Bacteriology, pp. 41–95. Edited by Brenner D. J., Krieg N. R., Stanley J. T... New York:: Springer;.
    [Google Scholar]
  37. Snauwaert I., Papalexandratou Z., De Vuyst L., Vandamme P.. ( 2013;). Characterization of strains of Weissella fabalis sp. nov. and Fructobacillus tropaeoli from spontaneous cocoa bean fermentations. . Int J Syst Evol Microbiol 63:, 1709–1716. [CrossRef][PubMed]
    [Google Scholar]
  38. Spitaels F., Li L., Wieme A., Balzarini T., Cleenwerck I., Van Landschoot A., De Vuyst L., Vandamme P.. ( 2014;). Acetobacter lambici sp. nov., isolated from fermenting lambic beer. . Int J Syst Evol Microbiol 64:, 1083–1089. [CrossRef][PubMed]
    [Google Scholar]
  39. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  40. Tindall B. J.. ( 1989;). Fully saturated menaquinones in the archaebacterium Pyrobaculum Islandicum. . FEMS Microbiol Lett 60:, 251–254. [CrossRef]
    [Google Scholar]
  41. Trcek J., Teuber M.. ( 2002;). Genetic and restriction analysis of the 16S–23S rDNA internal transcribed spacer regions of the acetic acid bacteria. . FEMS Microbiol Lett 208:, 69–75. [CrossRef][PubMed]
    [Google Scholar]
  42. Vaz-Moreira I., Nobre M. F., Nunes O. C., Manaia C. M.. ( 2007;). Gulbenkiania mobilis gen. nov., sp. nov., isolated from treated municipal wastewater. . Int J Syst Evol Microbiol 57:, 1108–1112. [CrossRef][PubMed]
    [Google Scholar]
  43. Wieme A., Cleenwerck I., Van Landschoot A., Vandamme P.. ( 2012;). Pediococcus lolii DSM 19927T and JCM 15055T are strains of Pediococcus acidilactici. . Int J Syst Evol Microbiol 62:, 3105–3108. [CrossRef][PubMed]
    [Google Scholar]
  44. Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V.. ( 1990;). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. . Nucleic Acids Res 18:, 6531–6535. [CrossRef][PubMed]
    [Google Scholar]
  45. Yukphan P., Malimas T., Muramatsu Y., Potacharoen W., Tanasupawat S., Nakagawa Y., Tanticharoen M., Yamada Y.. ( 2011;). Neokomagataea gen. nov., with descriptions of Neokomagataea thailandica sp. nov. and Neokomagataea tanensis sp. nov., osmotolerant acetic acid bacteria of the α-Proteobacteria. . Biosci Biotechnol Biochem 75:, 419–426. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.068049-0
Loading
/content/journal/ijsem/10.1099/ijs.0.068049-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error