1887

Abstract

A conditional piezophilic, hyperthermophilic archaeon showing growth over a wide range of temperature, pH and pressure was isolated from an oil-immersed hydrothermal chimney at a depth of 2006.9 m in the Guaymas Basin. Enrichment and isolation of strain A501 were performed at 80 °C at 0.1 MPa. Cells of isolate A501 were irregular motile cocci with a polar tuft of flagella and generally 0.6–2.6 µm in diameter. Growth was detected over the range 50–100 °C (optimal growth at 85 °C) at atmospheric pressure and was observed at 102 °C at a pressure of 10 MPa. At 85 °C, growth was observed at a pressure of 0.1–70 MPa (optimum pressure 0.1 MPa–30 MPa), while at 95 °C, the pressure allowing growth ranged from 0.1 MPa to 50 MPa (optimum pressure 10 MPa). Cells of strain A501 grew at pH 4–9 (optimum pH 7.0) and a NaCl concentration of 1.0–5.0 % (w/v) (optimum concentration 2.5 % NaCl). This isolate was an anaerobic chemo-organoheterotroph and was able to utilize yeast extract, peptone, tryptone and starch as the single carbon source for growth. Elemental sulfur and cysteine stimulated growth; however, these molecules were not necessary. The DNA G+C content of the complete genome was 53.47 mol%. The results of 16S rRNA gene sequence analysis indicated that strain A501 belongs to the genus . There was no significant similarity between strain A501 and the phylogenetically related species of the genus based on complete genome sequence alignments and calculation of the average nucleotide identity and the tetranucleotide signature frequency correlation coefficient. These results indicate that strain A501 represents a novel species, sp. nov. The type strain is A501 ( = CGMCC 7834 = JCM 30233).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.067942-0
2015-01-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/1/30.html?itemId=/content/journal/ijsem/10.1099/ijs.0.067942-0&mimeType=html&fmt=ahah

References

  1. Atomi H., Fukui T., Kanai T., Morikawa M., Imanaka T.. ( 2004;). Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. . Archaea 1:, 263–267. [CrossRef][PubMed]
    [Google Scholar]
  2. Canganella F., Gonzalez J. M., Yanagibayashi M., Kato C., Horikoshi K.. ( 1997;). Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermococcus peptonophilus. . Arch Microbiol 168:, 1–7. [CrossRef][PubMed]
    [Google Scholar]
  3. Duffaud G. D., d’Hennezel O. B., Peek A. S., Reysenbach A. L., Kelly R. M.. ( 1998;). Isolation and characterization of Thermococcus barossii, sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent flange formation. . Syst Appl Microbiol 21:, 40–49. [CrossRef][PubMed]
    [Google Scholar]
  4. Fiala G., Stetter K. O.. ( 1986;). Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. . Arch Microbiol 145:, 56–61. [CrossRef]
    [Google Scholar]
  5. Godfroy A., Lesongeur F., Raguénès G., Quérellou J., Antoine E., Meunier J. R., Guezennec J., Barbier G.. ( 1997;). Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. . Int J Syst Bacteriol 47:, 622–626. [CrossRef][PubMed]
    [Google Scholar]
  6. González J. M., Kato C., Horikoshi K.. ( 1995;). Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. . Arch Microbiol 164:, 159–164. [CrossRef][PubMed]
    [Google Scholar]
  7. Gorlas A., Alain K., Bienvenu N., Isaac S., Geslin C.. ( 2013;). Thermococcus prieurii sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 63:, 2920–2926. [CrossRef][PubMed]
    [Google Scholar]
  8. He Y., Xiao X., Wang F.. ( 2013;). Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas Basin. . Front Microbiol 4:, 148–148. [CrossRef][PubMed]
    [Google Scholar]
  9. Jolivet E., L’Haridon S., Corre E., Forterre P., Prieur D.. ( 2003;). Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. . Int J Syst Evol Microbiol 53:, 847–851. [CrossRef][PubMed]
    [Google Scholar]
  10. Jolivet E., Corre E., L’Haridon S., Forterre P., Prieur D.. ( 2004;). Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. . Extremophiles 8:, 219–227. [CrossRef][PubMed]
    [Google Scholar]
  11. Jørgensen B. B., Boetius A.. ( 2007;). Feast and famine – microbial life in the deep-sea bed. . Nat Rev Microbiol 5:, 770–781. [CrossRef][PubMed]
    [Google Scholar]
  12. Kobayashi T., Kwak Y. S., Akiba T., Kudo T., Horikoshi K.. ( 1994;). Thermococcus profundus sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. . Syst Appl Microbiol 17:, 232–236. [CrossRef]
    [Google Scholar]
  13. Kuwabara T., Minaba M., Iwayama Y., Inouye I., Nakashima M., Marumo K., Maruyama A., Sugai A., Itoh T. et al. ( 2005;). Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount. . Int J Syst Evol Microbiol 55:, 2507–2514. [CrossRef][PubMed]
    [Google Scholar]
  14. Marteinsson V. T., Birrien J. L., Reysenbach A. L., Vernet M., Marie D., Gambacorta A., Messner P., Sleytr U. B., Prieur D.. ( 1999;). Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. . Int J Syst Bacteriol 49:, 351–359. [CrossRef][PubMed]
    [Google Scholar]
  15. Miroshnichenko M. L., Gongadze G. M., Rainey F. A., Kostyukova A. S., Lysenko A. M., Chernyh N. A., Bonch-Osmolovskaya E. A.. ( 1998;). Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. . Int J Syst Bacteriol 48:, 23–29. [CrossRef][PubMed]
    [Google Scholar]
  16. Prieur D.. ( 2002;). Hydrothermal vents: prokaryotes in deep sea hydrothermal vents. . In Encyclopedia of Environmental Microbiology, pp. 1617–1628. Edited by Bitton G... New York:: Wiley;. [CrossRef]
    [Google Scholar]
  17. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  19. Takai K., Sugai A., Itoh T., Horikoshi K.. ( 2000;). Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. . Int J Syst Evol Microbiol 50:, 489–500. [CrossRef][PubMed]
    [Google Scholar]
  20. Takai K., Nakagawa S., Reysenbach A. L., Hoek J.. ( 2006;). Microbial ecology of mid-ocean ridges and back-arc basins. . In Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions (Geophysical Monograph Series vol. 166), pp. 185–214. Edited by Chrisie D. M., Fisher C. R., Lee S.-M., Givens S... Washington, DC:: AGU Books;. [CrossRef]
    [Google Scholar]
  21. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  22. Xu Z., Hao B.. ( 2009;). CVTree update: a newly designed phylogenetic study platform using composition vectors and whole genomes. . Nucleic Acids Res 37: (Web Server issue), W174–W178. [CrossRef][PubMed]
    [Google Scholar]
  23. Zeng X., Birrien J.-L., Fouquet Y., Cherkashov G., Jebbar M., Querellou J., Oger P., Cambon-Bonavita M.-A., Xiao X., Prieur D.. ( 2009;). Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. . ISME J 3:, 873–876. [CrossRef][PubMed]
    [Google Scholar]
  24. Zillig W., Holz I., Janekovic D., Schäfer W., Reiter W. D.. ( 1983;). The archaebacterium Thermococcus celer represents, a novel genus within the thermophilic branch of the archaebacteria. . Syst Appl Microbiol 4:, 88–94. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.067942-0
Loading
/content/journal/ijsem/10.1099/ijs.0.067942-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error