1887

Abstract

Two Gram-negative, rod-shaped, non-spore-forming bacteria, isolated from metal working fluids were investigated to determine their taxonomic positions. On the basis of 16S rRNA gene sequence phylogeny, both strains (MPA 1113 and MPA 1105) formed a distinct cluster with 97.7 % sequence similarity between them, which was in the vicinity of members of the genera , , , , and to which they showed low sequence similarities (below 94 %). The predominant compounds in the polyamine pattern and in the quinone system of the two strains were spermidine and ubiquinone Q-10, respectively. The polar lipid profiles were composed of the major compounds: phosphatidylmonomethylethanolamine, phosphatidylglycerol, phosphatidylcholine, major or moderate amounts of diphosphatidylglycerol, two unidentified glycolipids and three unidentified aminolipids. Several minor lipids were also detected. The major fatty acids were either C cyclo ω8 or Cω7. The results of fatty acid analysis and physiological and biochemical tests allowed both, the genotypic and phenotypic differentiation of the isolates from each other, while the chemotaxonomic traits allowed them to be differentiated from the most closely related genera. In summary, low 16S rRNA gene sequence similarities and marked differences in polar lipid profiles, as well as in polyamine patterns, is suggestive of a novel genus for which the name gen. nov. is proposed. MPA 1113 ( = CCM 8528 = LMG 28286 = CIP 110802) and MPA 1105 ( = CCM 8527 = LMG 28285) are proposed to be the type strains representing two novel species within the novel genus, gen. nov., for which the names sp. nov. and sp. nov. are suggested, respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.067652-0
2015-01-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/1/147.html?itemId=/content/journal/ijsem/10.1099/ijs.0.067652-0&mimeType=html&fmt=ahah

References

  1. Altenburgera P., Kämpferb P., Makristathisc A., Lubitza W., Bussea H.-J.. ( 1996;). Classification of bacteria isolated from a medieval wall painting. . J Biotechnol 47:, 39–52. [CrossRef]
    [Google Scholar]
  2. Ardley J. K., Parker M. A., De Meyer S. E., Trengove R. D., O’Hara G. W., Reeve W. G., Yates R. J., Dilworth M. J., Willems A., Howieson J. G.. ( 2012;). Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. . Int J Syst Evol Microbiol 62:, 2579–2588. [CrossRef][PubMed]
    [Google Scholar]
  3. Auling G., Busse H.-J., Pilz F., Webb L., Kneifel H., Claus D.. ( 1991;). Rapid differentiation by polyamine analysis of Xanthomonas strains from phytopathogenic pseudomonads and other members of the class Proteobacteria interacting with plants. . Int J Syst Bacteriol 41:, 223–228. [CrossRef]
    [Google Scholar]
  4. Auling G., Busse H.-J., Egli T., El-Banna T., Stackebrandt E.. ( 1993;). Description of the Gram-negative, obligately aerobic, nitrilotriacetat (NTA)-utilizing bacteria as Chelatobacter heintzii, gen. nov., sp. nov., and Chelatococcus asaccharovorans, gen. nov., sp. nov.. Syst Appl Microbiol 16:, 104–112. [CrossRef]
    [Google Scholar]
  5. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci U S A 75:, 4801–4805. [CrossRef][PubMed]
    [Google Scholar]
  6. Busse H.-J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  7. Christensen W. B.. ( 1946;). Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. . J Bacteriol 52:, 461–466.[PubMed]
    [Google Scholar]
  8. Das S. K., Mishra A. K., Tindall B. J., Rainey F. A., Stackebrandt E.. ( 1996;). Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. . Int J Syst Bacteriol 46:, 981–987. [CrossRef][PubMed]
    [Google Scholar]
  9. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  10. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef][PubMed]
    [Google Scholar]
  11. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of the protein molecules. . In Mammalian protein metabolism, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;. [CrossRef]
    [Google Scholar]
  12. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  13. Kämpfer P., Steiof M., Dott W.. ( 1991;). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef][PubMed]
    [Google Scholar]
  14. Kämpfer P., Huber B., Lodders N., Warfolomeow I., Busse H.-J., Scholz H. C.. ( 2009a;). Pseudochrobactrum lubricantis sp. nov., isolated from a metal-working fluid. . Int J Syst Evol Microbiol 59:, 2464–2467. [CrossRef][PubMed]
    [Google Scholar]
  15. Kämpfer P., Lodders N., Warfolomeow I., Falsen E., Busse H. J.. ( 2009b;). Corynebacterium lubricantis sp. nov., isolated from a coolant lubricant. . Int J Syst Evol Microbiol 59:, 1112–1115. [CrossRef][PubMed]
    [Google Scholar]
  16. Kämpfer P., Lodders N., Warfolomeow I., Busse H.-J.. ( 2009c;). Tessaracoccus lubricantis sp. nov., isolated from a metalworking fluid. . Int J Syst Evol Microbiol 59:, 1545–1549. [CrossRef][PubMed]
    [Google Scholar]
  17. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  18. Kuever J., Könneke M., Galushko A., Drzyzga O.. ( 2001;). Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov.. Int J Syst Evol Microbiol 51:, 171–177.[PubMed]
    [Google Scholar]
  19. Liu J.-H., Wang Y.-X., Zhang X.-X., Wang Z.-G., Chen Y.-G., Wen M.-L., Xu L.-H., Peng Q., Cui X.-L.. ( 2010;). Salinarimonas rosea gen. nov., sp. nov., a new member of the α-2 subgroup of the Proteobacteria. . Int J Syst Evol Microbiol 60:, 55–60. [CrossRef][PubMed]
    [Google Scholar]
  20. Lodders N., Kämpfer P.. ( 2012;). A combined cultivation and cultivation-independent approach shows high bacterial diversity in water-miscible metalworking fluids. . Syst Appl Microbiol 35:, 246–252. [CrossRef][PubMed]
    [Google Scholar]
  21. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  22. Perkins S. D., Angenent L. T.. ( 2010;). Potential pathogenic bacteria in metalworking fluids and aerosols from a machining facility. . FEMS Microbiol Ecol 74:, 643–654. [CrossRef][PubMed]
    [Google Scholar]
  23. Pitcher D. G., Saunders N. A., Owen R. J.. ( 1989;). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. . Lett Appl Microbiol 8:, 151–156. [CrossRef]
    [Google Scholar]
  24. Pruesse E., Peplies J., Glöckner F. O.. ( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28:, 1823–1829. [CrossRef][PubMed]
    [Google Scholar]
  25. Rabenstein A., Koch T., Remesch M., Brinksmeier E., Kuever J.. ( 2009;). Microbial degradation of water miscible metal working fluids. . Int Biodeterior Biodegradation 63:, 1023–1029. [CrossRef]
    [Google Scholar]
  26. Radl V., Simões-Araújo J.-L., Leite J., Passos S. R., Martins L. M. V., Xavier G. R., Rumjanek N. G., Baldani J. I., Zilli J. E.. ( 2014;). Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil. . Int J Syst Evol Microbiol 64:, 725–730. [CrossRef][PubMed]
    [Google Scholar]
  27. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22:, 2688–2690. [CrossRef][PubMed]
    [Google Scholar]
  28. Stolz A., Busse H.-J., Kämpfer P.. ( 2007;). Pseudomonas knackmussii sp. nov.. Int J Syst Evol Microbiol 57:, 572–576. [CrossRef][PubMed]
    [Google Scholar]
  29. Tani A., Sahin N., Kimbara K.. ( 2012a;). Methylobacterium gnaphalii sp. nov., isolated from leaves of Gnaphalium spicatum. . Int J Syst Evol Microbiol 62:, 2602–2607. [CrossRef][PubMed]
    [Google Scholar]
  30. Tani A., Sahin N., Kimbara K.. ( 2012b;). Methylobacterium oxalidis sp. nov., isolated from leaves of Oxalis corniculata. . Int J Syst Evol Microbiol 62:, 1647–1652. [CrossRef][PubMed]
    [Google Scholar]
  31. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  32. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  33. Urdiain M., López-López A., Gonzalo C., Busse H.-J., Langer S., Kämpfer P., Rosselló-Móra R.. ( 2008;). Reclassification of Rhodobium marinum and Rhodobium pfennigii as Afifella marina gen. nov. comb. nov. and Afifella pfennigii comb. nov., a new genus of photoheterotrophic Alphaproteobacteria and emended descriptions of Rhodobium, Rhodobium orientis and Rhodobium gokarnense. . Syst Appl Microbiol 31:, 339–351. [CrossRef][PubMed]
    [Google Scholar]
  34. Veyisoglu A., Camas M., Tatar D., Guven K., Sazak A., Sahin N.. ( 2013;). Methylobacterium tarhaniae sp. nov., isolated from arid soil. . Int J Syst Evol Microbiol 63:, 2823–2828. [CrossRef][PubMed]
    [Google Scholar]
  35. Weon H. Y., Kim B. Y., Yoo S. H., Kwon S. W., Go S. J., Stackebrandt E.. ( 2008;). Uliginosibacterium gangwonense gen. nov., sp. nov., isolated from a wetland, Yongneup, in Korea. . Int J Syst Evol Microbiol 58:, 131–135. [CrossRef][PubMed]
    [Google Scholar]
  36. Weon H.-Y., Kwon S.-W., Son J.-A., Jo E.-H., Kim S.-J., Kim Y.-S., Kim B.-Y., Ka J.-O.. ( 2010;). Description of Microvirga aerophila sp. nov. and Microvirga aerilata sp. nov., isolated from air, reclassification of Balneimonas flocculans Takeda et al. 2004 as Microvirga flocculans comb. nov. and emended description of the genus Microvirga. . Int J Syst Evol Microbiol 60:, 2596–2600. [CrossRef][PubMed]
    [Google Scholar]
  37. Yarza P., Richter M., Peplies J., Euzéby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31:, 241–250. [CrossRef][PubMed]
    [Google Scholar]
  38. Yoon J.-H., Kang S.-J., Im W.-T., Lee S.-T., Oh T.-K.. ( 2008;). Chelatococcus daeguensis sp. nov., isolated from wastewater of a textile dye works, and emended description of the genus Chelatococcus. . Int J Syst Evol Microbiol 58:, 2224–2228. [CrossRef][PubMed]
    [Google Scholar]
  39. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R.. ( 1998;). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:, 179–186. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.067652-0
Loading
/content/journal/ijsem/10.1099/ijs.0.067652-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error