1887

Abstract

A bacterial strain, designated GAU11, was isolated from soil in Japan. Cells of the strain were Gram-stain-negative, aerobic, non-motile rods. The 16S rRNA gene sequence of strain GAU11 showed high similarity to those of BF-3 (98.8 %), CC21 (96.4 %), R-24608 (96.2 %), K601 (96.2 %), TBEA3 (95.9 %) and LMG 1253 (95.9 %). Strain GAU11 contained ubiquinone 8 as the sole ubiquinone and diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol as major polar lipids. Its major cellular fatty acids were C, Cω7 and summed feature 3 (Cω7 and/or iso-C 2-OH). The DNA G+C content of strain GAU11 was 68.2 mol%. The DNA–DNA relatedness between strain GAU11 and DSM 22523 was 52 or 68 % (reciprocal value). Phenotypic characterization indicated that strain GAU11 represents a member of the genus , but at the same time distinguished it from DSM 22523. From polyphasic characterization, this strain should be classified as representing a novel species of the genus , for which the name sp. nov. (type strain GAU11 = JCM 19903 = DSM 28451) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.067439-0
2014-12-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/12/3976.html?itemId=/content/journal/ijsem/10.1099/ijs.0.067439-0&mimeType=html&fmt=ahah

References

  1. An D.-S., Im W.-T., Yang H.-C., Kang M. S., Kim K. K., Jin L., Kim M. K., Lee S.-T.. ( 2005;). Cellulomonas terrae sp. nov., a cellulolytic and xylanolytic bacterium isolated from soil. . Int J Syst Evol Microbiol 55:, 1705–1709. [CrossRef][PubMed]
    [Google Scholar]
  2. Blümel S., Busse H.-J., Stolz A., Kämpfer P.. ( 2001;). Xenophilus azovorans gen. nov., sp. nov., a soil bacterium that is able to degrade azo dyes of the orange II type. . Int J Syst Evol Microbiol 51:, 1831–1837. [CrossRef][PubMed]
    [Google Scholar]
  3. Bruland N., Bathe S., Willems A., Steinbüchel A.. ( 2009;). Pseudorhodoferax soli gen. nov., sp. nov. and Pseudorhodoferax caeni sp. nov., two members of the class Betaproteobacteria belonging to the family Comamonadaceae. . Int J Syst Evol Microbiol 59:, 2702–2707. [CrossRef][PubMed]
    [Google Scholar]
  4. Buck J. D.. ( 1982;). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. . Appl Environ Microbiol 44:, 992–993.[PubMed]
    [Google Scholar]
  5. Chang Y.-H., Han J.-I., Chun J., Lee K. C., Rhee M.-S., Kim Y.-B., Bae K. S.. ( 2002;). Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. . Int J Syst Evol Microbiol 52:, 377–381.[PubMed]
    [Google Scholar]
  6. De Vos P., Kersters K., Falsen E., Pot B., Gillis M., Segers P., De Ley J.. ( 1985;). Comamonas Davis and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev.. Int J Syst Bacteriol 35:, 443–453. [CrossRef]
    [Google Scholar]
  7. Ding L., Yokota A.. ( 2004;). Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov.. Int J Syst Evol Microbiol 54:, 2223–2230. [CrossRef][PubMed]
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  9. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  10. Grabovich M., Gavrish E., Kuever J., Lysenko A. M., Podkopaeva D., Dubinina G.. ( 2006;). Proposal of Giesbergeria voronezhensis gen. nov., sp. nov. and G. kuznetsovii sp. nov. and reclassification of [Aquaspirillum] anulus, [A.] sinuosum and [A.] giesbergeri as Giesbergeria anulus comb. nov., G. sinuosa comb. nov. and G. giesbergeri comb. nov., and [Aquaspirillum] metamorphum and [A.] psychrophilum as Simplicispira metamorpha gen. nov., comb. nov. and S. psychrophila comb. nov.. Int J Syst Evol Microbiol 56:, 569–576. [CrossRef][PubMed]
    [Google Scholar]
  11. Hatayama K., Kawai S., Shoun H., Ueda Y., Nakamura A.. ( 2005;). Pseudomonas azotifigens sp. nov., a novel nitrogen-fixing bacterium isolated from a compost pile. . Int J Syst Evol Microbiol 55:, 1539–1544. [CrossRef][PubMed]
    [Google Scholar]
  12. Hatayama K., Esaki K., Ide T.. ( 2013;). Cellulomonas soli sp. nov. and Cellulomonas oligotrophica sp. nov., isolated from soil. . Int J Syst Evol Microbiol 63:, 60–65. [CrossRef][PubMed]
    [Google Scholar]
  13. Heylen K., Lebbe L., De Vos P.. ( 2008;). Acidovorax caeni sp. nov., a denitrifying species with genetically diverse isolates from activated sludge. . Int J Syst Evol Microbiol 58:, 73–77. [CrossRef][PubMed]
    [Google Scholar]
  14. Kämpfer P., Thummes K., Chu H.-I., Tan C.-C., Arun A. B., Chen W.-M., Lai W.-A., Shen F.-T., Rekha P. D., Young C.-C.. ( 2008;). Pseudacidovorax intermedius gen. nov., sp. nov., a novel nitrogen-fixing betaproteobacterium isolated from soil. . Int J Syst Evol Microbiol 58:, 491–495. [CrossRef][PubMed]
    [Google Scholar]
  15. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  16. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  17. Mechichi T., Stackebrandt E., Fuchs G.. ( 2003;). Alicycliphilus denitrificans gen. nov., sp. nov., a cyclohexanol-degrading, nitrate-reducing β-proteobacterium. . Int J Syst Evol Microbiol 53:, 147–152. [CrossRef][PubMed]
    [Google Scholar]
  18. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  19. Nishijima M., Araki-Sakai M., Sano H.. ( 1997;). Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. . J Microbiol Methods 28:, 113–122. [CrossRef]
    [Google Scholar]
  20. Reasoner D. J., Geldreich E. E.. ( 1985;). A new medium for the enumeration and subculture of bacteria from potable water. . Appl Environ Microbiol 49:, 1–7.[PubMed]
    [Google Scholar]
  21. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  22. Spring S., Jäckel U., Wagner M., Kämpfer P.. ( 2004;). Ottowia thiooxydans gen. nov., sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb. nov.. Int J Syst Evol Microbiol 54:, 99–106. [CrossRef][PubMed]
    [Google Scholar]
  23. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  24. Tamaoka J., Ha D.-M., Komagata K.. ( 1987;). Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas. . Int J Syst Bacteriol 37:, 52–59. [CrossRef]
    [Google Scholar]
  25. Tamura K., Nei M.. ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10:, 512–526.[PubMed]
    [Google Scholar]
  26. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  27. Tayeb L. A., Lefevre M., Passet V., Diancourt L., Brisse S., Grimont P. A. D.. ( 2008;). Comparative phylogenies of Burkholderia, Ralstonia, Comamonas, Brevundimonas and related organisms derived from rpoB, gyrB and rrs gene sequences. . Res Microbiol 159:, 169–177. [CrossRef][PubMed]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  29. Wauters G., De Baere T., Willems A., Falsen E., Vaneechoutte M.. ( 2003;). Description of Comamonas aquatica comb. nov. and Comamonas kerstersii sp. nov. for two subgroups of Comamonas terrigena and emended description of Comamonas terrigena. . Int J Syst Evol Microbiol 53:, 859–862. [CrossRef][PubMed]
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  31. Wen A., Fegan M., Hayward C., Chakraborty S., Sly L. I.. ( 1999;). Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov.. Int J Syst Bacteriol 49:, 567–576. [CrossRef][PubMed]
    [Google Scholar]
  32. Wieser M., Busse H.-J.. ( 2000;). Rapid identification of Staphylococcus epidermidis. . Int J Syst Evol Microbiol 50:, 1087–1093. [CrossRef][PubMed]
    [Google Scholar]
  33. Willems A., Pot B., Falsen E., Vandamme P., Gillis M., Kersters K., De Ley J.. ( 1991a;). Polyphasic taxonomic study of the emended genus Comamonas: relationship to Aquaspirillum aquaticum, E. Falsen group 10, and other clinical isolates. . Int J Syst Bacteriol 41:, 427–444. [CrossRef]
    [Google Scholar]
  34. Willems A., De Ley J., Gillis M., Kersters K.. ( 1991b;). Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis 1969). . Int J Syst Bacteriol 41:, 445–450. [CrossRef]
    [Google Scholar]
  35. Yu X.-Y., Li Y.-F., Zheng J.-W., Li Y., Li L., He J., Li S.-P.. ( 2011;). Comamonas zonglianii sp. nov., isolated from phenol-contaminated soil. . Int J Syst Evol Microbiol 61:, 255–258. [CrossRef][PubMed]
    [Google Scholar]
  36. Zhang J., Song F., Xin Y. H., Zhang J., Fang C.. ( 2009;). Microvirga guangxiensis sp. nov., a novel alphaproteobacterium from soil, and emended description of the genus Microvirga. . Int J Syst Evol Microbiol 59:, 1997–2001. [CrossRef][PubMed]
    [Google Scholar]
  37. Zhang J., Wang Y., Zhou S., Wu C., He J., Li F.. ( 2013;). Comamonas guangdongensis sp. nov., isolated from subterranean forest sediment, and emended description of the genus Comamonas. . Int J Syst Evol Microbiol 63:, 809–814. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.067439-0
Loading
/content/journal/ijsem/10.1099/ijs.0.067439-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error