1887

Abstract

A Gram-stain-negative, aerobic, yellow-pigmented, non-motile, non-spore-forming, rod-shaped bacterial strain, Z29, was isolated from the surface of weathered rock (potassic trachyte) from Nanjing, Jiangsu Province, PR China. Phylogenetic analysis based on 16S rRNA gene sequences suggested that strain Z29 belongs to the genus in the family . Levels of 16S rRNA gene sequence similarity between strain Z29 and the type strains of recognized species of the genus ranged from 92.7 to 98.2 %. The main fatty acids of strain Z29 were iso-C, Cω5 and iso-C 3-OH. It also contained menaquinone 7 (MK-7) as the respiratory quinone and homospermidine as the main polyamine. The polar lipid profile contained phosphatidylethanolamine, unknown aminolipids, unknown phospholipids and unknown lipids. The total DNA G+C content of strain Z29 was 51.3 mol%. Phenotypic properties and chemotaxonomic data supported the affiliation of strain Z29 with the genus . The low level of DNA–DNA relatedness (ranging from 14.6 to 29.8 %) to the type strains of other species of the genus and differential phenotypic properties demonstrated that strain Z29 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Z29 ( = CCTCC AB 2014066 = LMG 28237).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.067249-0
2015-02-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/2/418.html?itemId=/content/journal/ijsem/10.1099/ijs.0.067249-0&mimeType=html&fmt=ahah

References

  1. Bernardet J.-F. , Nakagawa Y. , Holmes B. . Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef] [PubMed]
    [Google Scholar]
  2. Busse H. J. , Auling G. . ( 1988; ). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  3. Collins M. D. , Pirouz T. , Goodfellow M. , Minnikin D. E. . ( 1977; ). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef] [PubMed]
    [Google Scholar]
  4. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  5. Fautz E. , Reichenbach H. . ( 1980; ). A simple test for flexirubin-type pigments. . FEMS Microbiol Lett 8:, 87–91. [CrossRef]
    [Google Scholar]
  6. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  7. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  9. Han S. I. , Lee H. J. , Whang K. S. . ( 2014; ). Chitinophaga polysaccharea sp. nov., an exopolysaccharide-producing bacterium isolated from the rhizoplane of Dioscorea japonica . . Int J Syst Evol Microbiol 64:, 55–59. [CrossRef] [PubMed]
    [Google Scholar]
  10. Huang Z. , Sheng X. F. , Zhao F. , He L. Y. , Huang J. , Wang Q. . ( 2012; ). Isoptericola nanjingensis sp. nov., a mineral-weathering bacterium. . Int J Syst Evol Microbiol 62:, 971–976.[PubMed] [CrossRef]
    [Google Scholar]
  11. Jacin H. , Mishkin A. R. . ( 1965; ). Separation of carbohydrates on borate impregnated silica gel G plates. . J Chromatogr A 18:, 170–173. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kämpfer P. , Young C. C. , Sridhar K. R. , Arun A. B. , Lai W. A. , Shen F. T. , Rekha P. D. . ( 2006; ). Transfer of [Flexibacter] sancti, [Flexibacter] filiformis, [Flexibacter] japonensis and [Cytophaga] arvensicola to the genus Chitinophaga and description of Chitinophaga skermanii sp. nov.. Int J Syst Evol Microbiol 56:, 2223–2228. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kämpfer P. , Lodders N. , Falsen E. . ( 2011; ). Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Hydrotalea to the family Chitinophagaceae fam. nov.. Int J Syst Evol Microbiol 61:, 518–523. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. . & other authors ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kimura M. . ( 1983; ). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  16. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . . New York:: Wiley;.
    [Google Scholar]
  17. Li L. , Sun L. , Shi N. , Liu L. , Guo H. J. , Xu A. F. , Zhang X. X. , Yao N. . ( 2013; ). Chitinophaga cymbidii sp. nov., isolated from Cymbidium goeringii roots. . Int J Syst Evol Microbiol 63:, 1800–1804. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lin S. Y. , Hameed A. , Liu Y. C. , Hsu Y. H. , Lai W. A. , Huang H. I. , Young C. C. . ( 2014; ). Chitinophaga taiwanensis sp. nov., isolated from the rhizosphere of Arabidopsis thaliana . . Int J Syst Evol Microbiol 64:, 426–430. [CrossRef] [PubMed]
    [Google Scholar]
  19. Marmur J. , Doty P. . ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  20. Miller L. T. . ( 1982; ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  21. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  22. Murray R. G. E. , Doetsch R. N. , Robinow F. . ( 1994; ). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  23. Proença D. N. , Nobre M. F. , Morais P. V. . ( 2014; ). Chitinophaga costaii sp. nov., an endophyte of Pinus pinaster, and emended description of Chitinophaga niabensis . . Int J Syst Evol Microbiol 64:, 1237–1243. [CrossRef] [PubMed]
    [Google Scholar]
  24. Ross H. N. M. , Grant W. D. , Harris J. E. . ( 1985; ). Lipids in archaebacterial taxonomy. . In Chemical Methods in Bacterial Systematics, pp. 289–300. Edited by Goodfellow M. , Minnikin D. E. . . London:: Academic Press;.
    [Google Scholar]
  25. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  26. Sangkhobol V. , Skerman V. B. D. . ( 1981; ). Chitinophaga, a new genus of chitinolytic myxobacteria. . Int J Syst Bacteriol 31:, 285–293. [CrossRef]
    [Google Scholar]
  27. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  28. Tamaoka J. , Katayama-Fujimura Y. , Kuraishi H. . ( 1983; ). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. . J Appl Bacteriol 54:, 31–36. [CrossRef]
    [Google Scholar]
  29. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  30. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  31. Timke M. , Wang-Lieu N. Q. , Altendorf K. , Lipski A. . ( 2005; ). Community structure and diversity of biofilms from a beer bottling plant as revealed using 16S rRNA gene clone libraries. . Appl Environ Microbiol 71:, 6446–6452. [CrossRef] [PubMed]
    [Google Scholar]
  32. Wang Q. , Cheng C. , He L. Y. , Huang Z. , Sheng X. F. . ( 2014; ). Chitinophaga jiangningensis sp. nov., a mineral-weathering bacterium. . Int J Syst Evol Microbiol 64:, 260–265. [CrossRef] [PubMed]
    [Google Scholar]
  33. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.067249-0
Loading
/content/journal/ijsem/10.1099/ijs.0.067249-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error