1887

Abstract

A Gram-reaction-variable, rod-shaped, motile, facultatively aerobic and endospore-forming bacterium, designated strain GSS02, was isolated from a forest soil. Strain GSS02 was capable of reducing humic substances and Fe(III) oxides. Strain GSS02 grew optimally at 35 °C, at pH 78 and in the presence of 1 % NaCl. The predominant menaquinone was MK-7. The major cellular fatty acids were anteiso-C and iso-C and the polar lipid profile contained mainly phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol, with moderate amounts of two unknown aminophospholipids and a minor amount of one unknown lipid. The DNA G+C content was 53.4 mol%. Comparative 16S rRNA gene sequence analysis showed that strain GSS02 was related most closely to JCM 21741 (98.1 % similarity). Mean DNA–DNA relatedness between strain GSS02 and JCM 21741 was 58.8±0.5 %. The phylogenetic, chemotaxonomic and phenotypic results clearly demonstrated that strain GSS02 belongs to the genus and represents a novel species, for which the name sp. nov. is proposed. The type strain is GSS02 ( = KCTC 33171 = CCTCC AB 2013236).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 41201227 and 41301257)
  • China Postdoctoral Science Foundation Grant (Award 2013M531828)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.067173-0
2014-11-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/11/3891.html?itemId=/content/journal/ijsem/10.1099/ijs.0.067173-0&mimeType=html&fmt=ahah

References

  1. Ahmed B., Cao B., McLean J. S., Ica T., Dohnalkova A., Istanbullu O., Paksoy A., Fredrickson J. K., Beyenal H. ( 2012 ). Fe(III) reduction and U(VI) immobilization by Paenibacillus sp. strain 300A, isolated from Hanford 300A subsurface sediments. . Appl Environ Microbiol 78, 80018009. [View Article] [PubMed]
    [Google Scholar]
  2. Ash C., Priest F. G., Collins M. D. ( 1993/1994 ). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. . Antonie van Leeuwenhoek 64, 253260. [View Article] [PubMed]
    [Google Scholar]
  3. Baik K. S., Lim C. H., Choe H. N., Kim E. M., Seong C. N. ( 2011 ). Paenibacillus rigui sp. nov., isolated from a freshwater wetland. . Int J Syst Evol Microbiol 61, 529534. [View Article] [PubMed]
    [Google Scholar]
  4. Baker G. C., Smith J. J., Cowan D. A. ( 2003 ). Review and re-analysis of domain-specific 16S primers. . J Microbiol Methods 55, 541555. [View Article] [PubMed]
    [Google Scholar]
  5. Benardini J. N., Vaishampayan P. A., Schwendner P., Swanner E., Fukui Y., Osman S., Satomi M., Venkateswaran K. ( 2011 ). Paenibacillus phoenicis sp. nov., isolated from the Phoenix Lander assembly facility and a subsurface molybdenum mine. . Int J Syst Evol Microbiol 61, 13381343. [View Article] [PubMed]
    [Google Scholar]
  6. Chapelle F. H. ( 2001 ). Ground-Water Microbiology and Geochemistry. New York:: Wiley;.
    [Google Scholar]
  7. Coates J. D., Ellis D. J., Blunt-Harris E. L., Gaw C. V., Roden E. E., Lovley D. R. ( 1998 ). Recovery of humic-reducing bacteria from a diversity of environments. . Appl Environ Microbiol 64, 15041509.[PubMed]
    [Google Scholar]
  8. Coates J. D., Ellis D. J., Gaw C. V., Lovley D. R. ( 1999 ). Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. . Int J Syst Bacteriol 49, 16151622. [View Article] [PubMed]
    [Google Scholar]
  9. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. ( 1977 ). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100, 221230. [View Article] [PubMed]
    [Google Scholar]
  10. Ding J., Zhang Y., Quan X., Chen S. ( 2014 ). Anaerobic biodecolorization of AO7 by a newly isolated Fe (III)-reducing bacterium Sphingomonas strain DJ. . J Chem Technol Biotechnol (in press). [View Article]
    [Google Scholar]
  11. Dong X., Cai M. ( 2001 ). Manual of Systematic and Determinative Bacteriology. Beijing:: Academic Press;.
    [Google Scholar]
  12. Esham E. C., Ye W. Y., Moran M. A. ( 2000 ). Identification and characterization of humic substances-degrading bacterial isolates from an estuarine environment. . FEMS Microbiol Ecol 34, 103111. [View Article] [PubMed]
    [Google Scholar]
  13. Ezaki T., Hashimoto Y., Yabuuchi E. ( 1989 ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane-filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39, 224229. [View Article]
    [Google Scholar]
  14. Felsenstein J. ( 1985 ). Confidence-limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [View Article]
    [Google Scholar]
  15. Fredrickson J. K., Gorby Y. A. ( 1996 ). Environmental processes mediated by iron-reducing bacteria. . Curr Opin Biotechnol 7, 287294. [View Article] [PubMed]
    [Google Scholar]
  16. Hong Y. G., Guo J., Xu Z. C., Xu M. Y., Sun G. P. ( 2007 ). Humic substances act as electron acceptor and redox mediator for microbial dissimilatory azoreduction by Shewanella decolorationis S12. . J Microbiol Biotechnol 17, 428437.[PubMed]
    [Google Scholar]
  17. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. & other authors ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [View Article] [PubMed]
    [Google Scholar]
  18. Kishore K. H., Begum Z., Pathan A. A. K., Shivaji S. ( 2010 ). Paenibacillus glacialis sp. nov., isolated from the Kafni glacier of the Himalayas, India. . Int J Syst Evol Microbiol 60, 19091913. [View Article] [PubMed]
    [Google Scholar]
  19. Li X. M., Zhou S. G., Li F. B., Wu C. Y., Zhuang L., Xu W., Liu L. ( 2009 ). Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17. . J Appl Microbiol 106, 130139. [View Article] [PubMed]
    [Google Scholar]
  20. Logan N. A., Berge O., Bishop A. H., Busse H. J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L. & other authors ( 2009 ). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59, 21142121. [View Article] [PubMed]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B. ( 1989 ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid-chromatography. . Int J Syst Bacteriol 39, 159167. [View Article]
    [Google Scholar]
  22. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M. ( 1977 ). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27, 104117. [View Article]
    [Google Scholar]
  23. Moon J. C., Jung Y. J., Jung J. H., Jung H. S., Cheong Y. R., Jeon C. O., Lee K. O., Lee S. Y. ( 2011 ). Paenibacillus sacheonensis sp. nov., a xylanolytic and cellulolytic bacterium isolated from tidal flat sediment. . Int J Syst Evol Microbiol 61, 27532757. [View Article] [PubMed]
    [Google Scholar]
  24. Oh H. W., Kim B. C., Lee K. H., Kim Y., Park D. S., Park H. M., Bae K. S. ( 2008 ). Paenibacillus camelliae sp. nov., isolated from fermented leaves of Camellia sinensis . . J Microbiol 46, 530534. [View Article] [PubMed]
    [Google Scholar]
  25. Park M. H., Traiwan J., Jung M. Y., Nam Y. S., Jeong J. H., Kim W. ( 2011 ). Paenibacillus chungangensis sp. nov., isolated from a tidal-flat sediment. . Int J Syst Evol Microbiol 61, 281285. [View Article] [PubMed]
    [Google Scholar]
  26. Rivas R., Mateos P. F., Martínez-Molina E., Velázquez E. ( 2005 ). Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. . Int J Syst Evol Microbiol 55, 405408. [View Article] [PubMed]
    [Google Scholar]
  27. Rzhetsky A., Nei M. ( 1993 ). Theoretical foundation of the minimum-evolution method of phylogenetic inference. . Mol Biol Evol 10, 10731095.[PubMed]
    [Google Scholar]
  28. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  29. Sasser M. ( 1990 ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  30. Schleifer K. H. ( 1985 ). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18, 123156. [View Article]
    [Google Scholar]
  31. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. ( 1997a ). Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis sp. nov.. Int J Syst Bacteriol 47, 299306. [View Article] [PubMed]
    [Google Scholar]
  32. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. ( 1997b ). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . . Int J Syst Bacteriol 47, 289298. [View Article] [PubMed]
    [Google Scholar]
  33. Stackebrandt E., Goebel B. M. ( 1994 ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44, 846849. [View Article]
    [Google Scholar]
  34. Tamaoka J. ( 1986 ). Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. . Methods Enzymol 123, 251256. [View Article] [PubMed]
    [Google Scholar]
  35. Tamura K., Dudley J., Nei M., Kumar S. ( 2007 ). mega4: molecular evolutionary genetic analysis (mega) software version 4.0. . Mol Biol Evol 24, 15961599. [View Article] [PubMed]
    [Google Scholar]
  36. Tang Q. Y., Yang N., Wang J., Xie Y. Q., Ren B., Zhou Y. G., Gu M. Y., Mao J., Li W. J. & other authors ( 2011 ). Paenibacillus algorifonticola sp. nov., isolated from a cold spring. . Int J Syst Evol Microbiol 61, 21672172. [View Article] [PubMed]
    [Google Scholar]
  37. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997 ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25, 48764882. [View Article] [PubMed]
    [Google Scholar]
  38. Tiago I., Pires C., Mendes V., Morais P. V., da Costa M. S., Veríssimo A. ( 2006 ). Bacillus foraminis sp. nov., isolated from a non-saline alkaline groundwater. . Int J Syst Evol Microbiol 56, 25712574. [View Article] [PubMed]
    [Google Scholar]
  39. Wang Y. B., Wu C. Y., Wang X. J., Zhou S. G. ( 2009 ). The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by Comamonas koreensis strain CY01. . J Hazard Mater 164, 941947. [View Article] [PubMed]
    [Google Scholar]
  40. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. & other authors ( 1987 ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37, 463464. [View Article]
    [Google Scholar]
  41. Yoon J. H., Kang S. J., Yeo S. H., Oh T. K. ( 2005 ). Paenibacillus alkaliterrae sp. nov., isolated from an alkaline soil in Korea. . Int J Syst Evol Microbiol 55, 23392344. [View Article] [PubMed]
    [Google Scholar]
  42. Zachara J. M., Fredrickson J. K., Li S. M., Kennedy D. W., Smith S. C., Gassman P. L. ( 1998 ). Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials. . Am Mineral 83, 14261443.
    [Google Scholar]
  43. Zhang L., Wang Y., Dai J., Tang Y. L., Yang Q., Luo X. S., Fang C. X. ( 2009 ). Bacillus korlensis sp. nov., a moderately halotolerant bacterium isolated from a sand soil sample in China. . Int J Syst Evol Microbiol 59, 17871792. [View Article] [PubMed]
    [Google Scholar]
  44. Zhang J., Wang Z. T., Yu H. M., Ma Y. C. ( 2013 ). Paenibacillus catalpae sp. nov., isolated from the rhizosphere soil of Catalpa speciosa . . Int J Syst Evol Microbiol 63, 17761781. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.067173-0
Loading
/content/journal/ijsem/10.1099/ijs.0.067173-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error