1887

Abstract

A strictly anaerobic, mesophilic, sulfate-reducing bacterium, strain KoBa311, isolated from the wastewater treatment plant at Konstanz, Germany, was characterized phenotypically and phylogenetically. Cells were Gram-stain-negative, non-motile, oval to short rods, 3–5 µm long and 0.8–1.0 µm wide with rounded ends, dividing by binary fission and occurring singly or in pairs. The strain grew optimally in freshwater medium and the optimum temperature was 30 °C. Strain KoBa311 showed optimum growth at pH 7.3−7.6. Organic electron donors were oxidized completely to carbon dioxide concomitant with sulfate reduction to sulfide. At excess substrate supply, substrates were oxidized incompletely and acetate (mainly) and/or propionate accumulated. The strain utilized short-chain fatty acids, alcohols (except methanol) and benzoate. Sulfate and DMSO were used as terminal electron acceptors for growth. The genomic DNA G+C content was 52.3 mol% and the respiratory quinone was menaquinone MK-5 (V-H). The major fatty acids were C, Cω7c/ω6c and Cω7c. Phylogenetic analysis based on 16S rRNA gene sequences placed strain KoBa311 within the family in the class . Its closest related bacterial species on the basis of the distance matrix were DSM 3882 (93.0 % similarity), (93.1 %), (92.9 %), (92.4 %), JS_SRB250Lac (92.3 %) and (92.3 %). On the basis of phylogenetic, physiological and chemotaxonomic characteristics, strain KoBa311 was distinct from any related type species. Therefore, strain KoBa311 is considered to represent a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is KoBa311 ( = DSM 28570 = KCTC 15441).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.066761-0
2015-01-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/1/77.html?itemId=/content/journal/ijsem/10.1099/ijs.0.066761-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Warren G., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef][PubMed]
    [Google Scholar]
  2. Beller H. R., Spormann A. M., Sharma P. K., Cole J. R., Reinhard M.. ( 1996;). Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium. . Appl Environ Microbiol 62:, 1188–1196.[PubMed]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  4. Castro H. F., Williams N. H., Ogram A.. ( 2000;). Phylogeny of sulfate-reducing bacteria. . FEMS Microbiol Ecol 31:(1)1–9.[PubMed]
    [Google Scholar]
  5. Fang H. H. P., Chen T., Li Y.‐Y., Chui H.‐K.. ( 1996;). Degradation of phenol in wastewater in an upflow anaerobic sludge blanket reactor. . Water Res 30:(6)1353–1360. [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  7. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  8. Friedrich M., Springer N., Ludwig W., Schink B.. ( 1996;). Phylogenetic positions of Desulfofustis glycolicus gen. nov., sp. nov., and Syntrophobotulus glycolicus gen. nov., sp. nov., two new strict anaerobes growing with glycolic acid. . Int J Syst Bacteriol 46:, 1065–1069. [CrossRef][PubMed]
    [Google Scholar]
  9. Gittel A., Seidel M., Kuever J., Galushko A. S., Cypionka H., Könneke M.. ( 2010;). Desulfopila inferna sp. nov., a sulfate-reducing bacterium isolated from the subsurface of a tidal sand-flat. . Int J Syst Evol Microbiol 60:, 1626–1630. [CrossRef][PubMed]
    [Google Scholar]
  10. Gregersen T.. ( 1978;). Rapid method for distinction of gram-negative from gram-positive bacteria. . Eur J Appl Microbiol Biotechnol 5:, 123–127. [CrossRef]
    [Google Scholar]
  11. Janssen P. H., Schuhmann A., Bak F., Liesack W.. ( 1996;). Disproportionation of inorganic sulfur compounds by the sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov.. Arch Microbiol 166:, 184–192. [CrossRef]
    [Google Scholar]
  12. Junghare M., Subudhi S., Lal B.. ( 2012;). Improvement of hydrogen production under decreased partial pressure by newly isolated alkaline tolerant anaerobe, Clostridium butyricum TM-9A: optimization of process parameters. . Int J Hydrogen Energy 37:, 3160–3168. [CrossRef]
    [Google Scholar]
  13. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  15. Kuever J., Rainey F. A., Widdel F.. ( 2006;). Family II. Desulfobulbaceae fam. nov.. In: D. J. BRENNER, N. R. KRIEG, J. T. STALEY and G. M. GARRITY (editors), Bergey's Manual of Systematic Bacteriology, , second editions., Vol. II (The Proteobacteria), part C (The Alpha-, Beta-, Delta- and Epsilon proteobacteria), Springer;, New York:, p. 988. [CrossRef]
    [Google Scholar]
  16. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. . Chichester, United Kingdom:: John Wiley and Sons;; 115–175.
  17. Li Y. Y., Fang H. H. P., Chui H. K., Chen T.. ( 1995;). UASB treatment of wastewater with concentrated benzoate. . J. Environ. Eng. 121(10):, 748–751. [CrossRef]
    [Google Scholar]
  18. Lie T. J., Clawson M. L., Godchaux W., Leadbetter E. R.. ( 1999;). Sulfidogenesis from 2-aminoethanesulfonate (taurine) fermentation by a morphologically unusual sulfate-reducing bacterium, Desulforhopalus singaporensis sp. nov.. Appl Environ Microbiol 65:, 3328–3334.[PubMed]
    [Google Scholar]
  19. Mountfort D. O., Brulla W. J., Krumholz L. R., Bryant M. P.. ( 1984;). Syntrophus buswellii gen. nov., sp. nov.: a benzoate catabolizer from methanogenic ecosystems. . Int J Syst Bacteriol 34:, 216–217. [CrossRef]
    [Google Scholar]
  20. Pfennig N.. ( 1978;). Rhodocyclus purpureus gen. nov. sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. . Int J Syst Bacteriol 28:, 283–288. [CrossRef]
    [Google Scholar]
  21. Pfennig N., Wagener S.. ( 1986;). An improved method of preparing wet mounts for photomicrographs of microorganisms. . J Microbiol Methods 4:, 303–306. [CrossRef]
    [Google Scholar]
  22. Plugge C. M., Zhang W., Scholten J. C. M., Stams A. J. M.. ( 2011;). Metabolic flexibility of sulfate-reducing bacteria. . Front Microbiol 2:, 81. [CrossRef][PubMed]
    [Google Scholar]
  23. Pruesse E., Peplies J., Glöckner F. O.. ( 2012;). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28:, 1823–1829. [CrossRef][PubMed]
    [Google Scholar]
  24. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F. O.. ( 2013;). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. . Nucleic Acids Res 41: (D1), D590–D596. [CrossRef][PubMed]
    [Google Scholar]
  25. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  26. Stamatakis A., Hoover P., Rougemont J.. ( 2008;). A rapid bootstrap algorithm for the RAxML Web servers. . Syst Biol 57:, 758–771. [CrossRef][PubMed]
    [Google Scholar]
  27. Suzuki D., Ueki A., Amaishi A., Ueki K.. ( 2007;). Desulfopila aestuarii gen. nov., sp. nov., a Gram-negative, rod-like, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. . Int J Syst Evol Microbiol 57:, 520–526. [CrossRef][PubMed]
    [Google Scholar]
  28. Szewzyk R., Pfennig N.. ( 1987;). Complete oxidation of catechol by the strictly anaerobic sulfate-reducing Desulfobacterium catecholicum sp. nov.. Arch Microbiol 147:, 163–168. [CrossRef]
    [Google Scholar]
  29. Szewzyk U., Schink B.. ( 1989;). Degradation of hydroquinone, gentisate, and benzoate by a fermenting bacterium in pure or defined mixed culture. . Arch Microbiol 151:, 541–545. [CrossRef]
    [Google Scholar]
  30. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  31. Tasaki M., Kamagata Y., Nakamura K., Mikami E.. ( 1991;). Isolation and characterization of a thermophilic benzoate-degrading, sulfate-reducing bacterium, Desulfotomaculum thermobenzoicum sp. nov.. Arch Microbiol 155:, 348–352. [CrossRef]
    [Google Scholar]
  32. Tindall B.. ( 1990;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  33. Tschech A., Pfennig N.. ( 1984;). Growth yield increase linked to caffeate reduction in Acetobacterium woodii. . Arch Microbiol 137:, 163–167. [CrossRef]
    [Google Scholar]
  34. Widdel F.. ( 1987;). Microbiology and ecology of sulfate-and sulfur-reducing bacteria. . In Biology of Anaerobic Microorganisms, pp. 469–585. Edited by Zehnder A. J. B... New York:: Wiley;.
    [Google Scholar]
  35. Widdel F., Bak F.. ( 1992;). Gram negative mesophilic sulfate reducing bacteria. . In The Prokaryotes, vol. IV, pp. 3352–3378. Edited by Balows H., Truper H. G., Dworkin M., Harder W., Schleifer K. H... New York:: Springer;. [CrossRef]
    [Google Scholar]
  36. Widdel F., Kohring G. W., Mayer F.. ( 1983;). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. . Arch Microbiol 134:, 286–294. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.066761-0
Loading
/content/journal/ijsem/10.1099/ijs.0.066761-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error