1887

Abstract

A Gram-stain-negative bacterium, designated SP-35, was isolated from compost and was subjected to a taxonomic study. This isolate was short-rod-shaped and non-spore-forming. Phylogenetic analysis based on 16S rRNA sequence comparison indicated the isolate was related to the genus . 16S rRNA gene sequence analysis showed that its closest neighbours were the type strains Dant 3-8 (96.8 % similarity), DSM 50244 (96.5 %), CY01 (95.9 %) and YY287 (95.6 %). Using phylogenetic analysis, DNA–DNA hybridization, fatty acid composition data and a range of physiological and biochemical characteristics we could clearly distinguish strain SP-35 from type strains of the genus . The genomic DNA G+C content of strain SP-35 was 63.1 mol%. The predominant cellular fatty acids were C, C cyclo, summed feature 3 (Cω6 and/or Cω7) and summed feature 8 (Cω6 and/or Cω7). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidlyglycerol. Differences in phenotypic and phylogenetic characteristics support the classification of strain SP-35 as a representative of a novel species in the genus , for which the name sp. nov. is proposed. The type strain is SP-35 ( = DSM 26136 = JCM 18194).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.066688-0
2014-12-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/12/4141.html?itemId=/content/journal/ijsem/10.1099/ijs.0.066688-0&mimeType=html&fmt=ahah

References

  1. Chang Y. H., Han J. I., Chun J., Lee K. C., Rhee M. S., Kim Y. B., Bae K. S.. ( 2002;). Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. . Int J Syst Evol Microbiol 52:, 377–381.[PubMed]
    [Google Scholar]
  2. Chou J. H., Sheu S. Y., Lin K. Y., Chen W. M., Arun A. B., Young C. C.. ( 2007;). Comamonas odontotermitis sp. nov., isolated from the gut of the termite Odontotermes formosanus. . Int J Syst Evol Microbiol 57:, 887–891. [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M. D., Jones D.. ( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. . Microbiol Rev 45:, 316–354.[PubMed]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  5. De Vos P., Kersters K., Falsen E., Pot B., Gillis M., Segers P., De Ley J.. ( 1985;). Comamonas Davis and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev.. Int J Syst Evol Microbiol 35:, 443–453. [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  7. Goodfellow M., Minnikin D. E.. ( 1985;). Chemical Methods in Bacterial Systematics. London:: Academic Press;.
    [Google Scholar]
  8. Hungate R. E.. ( 1969;). A roll tube method for cultivation of strict anaerobes. . Methods Microbiol 3B:, 117–132. [CrossRef]
    [Google Scholar]
  9. Kim K. H., Ten L. N., Liu Q. M., Im W. T., Lee S. T.. ( 2008;). Comamonas granuli sp. nov., isolated from granules used in a wastewater treatment plant. . J Microbiol 46:, 390–395. [CrossRef][PubMed]
    [Google Scholar]
  10. Kumar S., Tamura K., Nei M.. ( 2004;). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. . Brief Bioinform 5:, 150–163. [CrossRef][PubMed]
    [Google Scholar]
  11. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  12. Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. (editors) ( 2007;). Methods for General and Molecular Microbiology, , 3rd edn.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  13. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  14. Tago Y., Yokota A.. ( 2004;). Comamonas badia sp. nov., a floc-forming bacterium isolated from activated sludge. . J Gen Appl Microbiol 50:, 243–248. [CrossRef][PubMed]
    [Google Scholar]
  15. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  16. Tindall B. J.. ( 1990;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  17. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad-hoc-committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  18. Young C. C., Chou J. H., Arun A. B., Yen W. S., Sheu S. Y., Shen F. T., Lai W. A., Rekha P. D., Chen W. M.. ( 2008;). Comamonas composti sp. nov., isolated from food waste compost. . Int J Syst Evol Microbiol 58:, 251–256. [CrossRef][PubMed]
    [Google Scholar]
  19. Yu X. Y., Li Y. F., Zheng J. W., Li Y., Li L., He J., Li S. P.. ( 2011;). Comamonas zonglianii sp. nov., isolated from phenol-contaminated soil. . Int J Syst Evol Microbiol 61:, 255–258. [CrossRef][PubMed]
    [Google Scholar]
  20. Zhang J., Wang Y., Zhou S., Wu C., He J., Li F.. ( 2013;). Comamonas guangdongensis sp. nov., isolated from subterranean forest sediment, and emended description of the genus Comamonas. . Int J Syst Evol Microbiol 63:, 809–814. [CrossRef][PubMed]
    [Google Scholar]
  21. Zhu D., Tanabe S. H., Xie C., Honda D., Sun J., Ai L.. ( 2014;). Bacillus ligniniphilus sp. nov., an alkaliphilic and halotolerant bacterium isolated from sediments of the South China Sea. . Int J Syst Evol Microbiol 64:, 1712–1717. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.066688-0
Loading
/content/journal/ijsem/10.1099/ijs.0.066688-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error