1887

Abstract

A novel Fe(III)-reducing bacterium, designated GSS01, was isolated from a forest soil sample using a liquid medium containing acetate and ferrihydrite as electron donor and electron acceptor, respectively. Cells of strain GSS01 were strictly anaerobic, Gram-stain-negative, motile, non-spore-forming and slightly curved rod-shaped. Growth occurred at 16–40 °C and optimally at 30 °C. The DNA G+C content was 60.9 mol%. The major respiratory quinone was MK-8. The major fatty acids were C, C and Cω7/Cω6. Strain GSS01 was able to grow with ferrihydrite, Fe(III) citrate, Mn(IV), sulfur, nitrate or anthraquinone-2,6-disulfonate, but not with fumarate, as sole electron acceptor when acetate was the sole electron donor. The isolate was able to utilize acetate, ethanol, glucose, lactate, butyrate, pyruvate, benzoate, benzaldehyde, -cresol and phenol but not toluene, -cresol, propionate, malate or succinate as sole electron donor when ferrihydrite was the sole electron acceptor. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain GSS01 was most closely related to PCA (98.3 % sequence similarity) and exhibited low similarities (94.9–91.8 %) to the type strains of other species of the genus . The DNA–DNA relatedness between strain GSS01 and PCA was 41.4±1.1 %. On the basis of phylogenetic analysis, phenotypic characterization and physiological tests, strain GSS01 is believed to represent a novel species of the genus , and the name sp. nov. is proposed. The type strain is GSS01 ( = KCTC 4545 = MCCC 1K00269).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.066662-0
2014-11-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/11/3786.html?itemId=/content/journal/ijsem/10.1099/ijs.0.066662-0&mimeType=html&fmt=ahah

References

  1. Baker G. C., Smith J. J., Cowan D. A.. ( 2003;). Review and re-analysis of domain-specific 16S primers. . J Microbiol Methods 55:, 541–555. [CrossRef][PubMed]
    [Google Scholar]
  2. Canfield D. E., Kristensen E., Thamdrup B.. ( 2005;). The iron and manganese cycles. . Adv Mar Biol 48:, 269–312. [CrossRef]
    [Google Scholar]
  3. Coates J. D., Phillips E. J., Lonergan D. J., Jenter H., Lovley D. R.. ( 1996;). Isolation of Geobacter species from diverse sedimentary environments. . Appl Environ Microbiol 62:, 1531–1536.[PubMed]
    [Google Scholar]
  4. Coates J. D., Bhupathiraju V. K., Achenbach L. A., Mclnerney M. J., Lovley D. R.. ( 2001;). Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers. . Int J Syst Evol Microbiol 51:, 581–588.[PubMed]
    [Google Scholar]
  5. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  6. Ding P., Shen C., Wang N., Yi W., Liu K., Ding X., Fu D.. ( 2009;). Carbon isotopic composition and its implications on paleoclimate of the underground ancient forest ecosystem in Sihui, Guangdong. . Science in China Series D: Earth Sciences 52:, 638–646. [CrossRef]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Fredrickson J. K., Gorby Y. A.. ( 1996;). Environmental processes mediated by iron-reducing bacteria. . Curr Opin Biotechnol 7:, 287–294. [CrossRef][PubMed]
    [Google Scholar]
  10. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K.. ( 1997;). Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. . Int J Syst Bacteriol 47:, 1129–1133. [CrossRef][PubMed]
    [Google Scholar]
  11. Hedrick D. B., Peacock A. D., Lovley D. R., Woodard T. L., Nevin K. P., Long P. E., White D. C.. ( 2009;). Polar lipid fatty acids, LPS-hydroxy fatty acids, and respiratory quinones of three Geobacter strains, and variation with electron acceptor. . J Ind Microbiol Biotechnol 36:, 205–209. [CrossRef][PubMed]
    [Google Scholar]
  12. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  13. Kunapuli U., Jahn M. K., Lueders T., Geyer R., Heipieper H. J., Meckenstock R. U.. ( 2010;). Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. . Int J Syst Evol Microbiol 60:, 686–695. [CrossRef][PubMed]
    [Google Scholar]
  14. Li X. M., Zhou S. G., Li F. B., Wu C. Y., Zhuang L., Xu W., Liu L.. ( 2009;). Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17. . J Appl Microbiol 106:, 130–139. [CrossRef][PubMed]
    [Google Scholar]
  15. Lovley D. R., Giovannoni S. J., White D. C., Champine J. E., Phillips E. J., Gorby Y. A., Goodwin S.. ( 1993;). Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. . Arch Microbiol 159:, 336–344. [CrossRef][PubMed]
    [Google Scholar]
  16. Lovley D. R., Holmes D. E., Nevin K. P.. ( 2004;). Dissimilatory Fe(III) and Mn(IV) reduction. . Adv Microb Physiol 49:, 219–286. [CrossRef][PubMed]
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  18. Prakash O., Gihring T. M., Dalton D. D., Chin K. J., Green S. J., Akob D. M., Wanger G., Kostka J. E.. ( 2010;). Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination. . Int J Syst Evol Microbiol 60:, 546–553. [CrossRef][PubMed]
    [Google Scholar]
  19. Roden E. E., Wetzel R. G.. ( 1996;). Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. . Limnol Oceanogr 41:, 1733–1748. [CrossRef]
    [Google Scholar]
  20. Shelobolina E. S., Nevin K. P., Blakeney-Hayward J. D., Johnsen C. V., Plaia T. W., Krader P., Woodard T., Holmes D. E., Vanpraagh C. G., Lovley D. R.. ( 2007;). Geobacter pickeringii sp. nov., Geobacter argillaceus sp. nov. and Pelosinus fermentans gen. nov., sp. nov., isolated from subsurface kaolin lenses. . Int J Syst Evol Microbiol 57:, 126–135. [CrossRef][PubMed]
    [Google Scholar]
  21. Shelobolina E. S., Vrionis H. A., Findlay R. H., Lovley D. R.. ( 2008;). Geobacter uraniireducens sp. nov., isolated from subsurface sediment undergoing uranium bioremediation. . Int J Syst Evol Microbiol 58:, 1075–1078. [CrossRef][PubMed]
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  24. Viulu S., Nakamura K., Kojima A., Yoshiyasu Y., Saitou S., Takamizawa K.. ( 2013a;). Geobacter sulfurreducens subsp. ethanolicus, subsp. nov., an ethanol-utilizing dissimilatory Fe(III)-reducing bacterium from a lotus field. . J Gen Appl Microbiol 59:, 325–334. [CrossRef][PubMed]
    [Google Scholar]
  25. Viulu S., Nakamura K., Okada Y., Saitou S., Takamizawa K.. ( 2013b;). Geobacter luticola sp. nov., an Fe(III)-reducing bacterium isolated from lotus field mud. . Int J Syst Evol Microbiol 63:, 442–448. [CrossRef][PubMed]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al.( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  27. Wu C. Y., Zhuang L., Zhou S. G., Li F. B., Li X. M.. ( 2010;). Fe(III)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01. . FEMS Microbiol Ecol 71:, 106–113. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.066662-0
Loading
/content/journal/ijsem/10.1099/ijs.0.066662-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error