1887

Abstract

A group of strains representing species of the genus , isolated from patients with leptospirosis in Mayotte (Indian Ocean), were previously found to be considerably divergent from other known species of the genus . This was inferred from sequence analysis of (16S rRNA) and other genetic loci and suggests that they belong to a novel species. Two strains from each serogroup currently identified within this novel species were studied. Spirochaete, aerobic, motile, helix-shaped strains grew well at 30–37 °C, but not at 13 °C or in the presence of 8-azaguanine. Draft genomes of the strains were also analysed to study the DNA relatedness with other species of the genus . The new isolates formed a distinct clade, which was most closely related to , in multilocus sequence analysis using concatenated sequences of the genes , , , , and . Analysis of average nucleotide identity and genome-to-genome distances, which have recently been proposed as reliable substitutes for classical DNA–DNA hybridization, further confirmed that these isolates should be classified as representatives of a novel species. The G+C content of the genomic DNA was 39.5 mol%. These isolates are considered to represent a novel species, for which the name sp. nov. is proposed, with 200901116 ( = CIP 110703 = DSM 28999) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.066597-0
2014-12-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/12/4061.html?itemId=/content/journal/ijsem/10.1099/ijs.0.066597-0&mimeType=html&fmt=ahah

References

  1. Auch A. F., Klenk H. P., Göker M. S.. ( 2010a;). Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. . Stand Genomic Sci 2:, 142–148. [CrossRef][PubMed]
    [Google Scholar]
  2. Auch A. F., von Jan M., Klenk H.-P., Göker M.. ( 2010b;). Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. . Stand Genomic Sci 2:, 117–134. [CrossRef][PubMed]
    [Google Scholar]
  3. Bourhy P., Collet L., Lernout T., Zinini F., Hartskeerl R. A., van der Linden H., Thiberge J. M., Diancourt L., Brisse S.. & other authors ( 2012;). Human leptospira isolates circulating in Mayotte (Indian Ocean) have unique serological and molecular features. . J Clin Microbiol 50:, 307–311. [CrossRef][PubMed]
    [Google Scholar]
  4. Brenner D. J., Kaufmann A. F., Sulzer K. R., Steigerwalt A. G., Rogers F. C., Weyant R. S.. ( 1999;). Further determination of DNA relatedness between serogroups and serovars in the family Leptospiraceae with a proposal for Leptospira alexanderi sp. nov. and four new Leptospira genomospecies. . Int J Syst Bacteriol 49:, 839–858. [CrossRef][PubMed]
    [Google Scholar]
  5. Bulach D. M., Zuerner R. L., Wilson P., Seemann T., McGrath A., Cullen P. A., Davis J., Johnson M., Kuczek E.. & other authors ( 2006;). Genome reduction in Leptospira borgpetersenii reflects limited transmission potential. . Proc Natl Acad Sci U S A 103:, 14560–14565. [CrossRef][PubMed]
    [Google Scholar]
  6. Chou L. F., Chen Y. T., Lu C. W., Ko Y. C., Tang C. Y., Pan M. J., Tian Y. C., Chiu C. H., Hung C. C., Yang C. W.. ( 2012;). Sequence of Leptospira santarosai serovar Shermani genome and prediction of virulence-associated genes. . Gene 511:, 364–370. [CrossRef][PubMed]
    [Google Scholar]
  7. Desvars A., Naze F., Vourc’h G., Cardinale E., Picardeau M., Michault A., Bourhy P.. ( 2012;). Similarities in Leptospira serogroup and species distribution in animals and humans in the Indian ocean island of Mayotte. . Am J Trop Med Hyg 87:, 134–140. [CrossRef][PubMed]
    [Google Scholar]
  8. Dietrich M., Wilkinson D. A., Soarimalala V., Goodman S. M., Dellagi K., Tortosa P.. ( 2014;). Diversification of an emerging pathogen in a biodiversity hotspot: Leptospira in endemic small mammals of Madagascar. . Mol Ecol 23:, 2783–2796. [CrossRef][PubMed]
    [Google Scholar]
  9. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef][PubMed]
    [Google Scholar]
  10. Ellinghausen H. C. Jr, McCullough W. G.. ( 1965;). Nutrition of Leptospira pomona and growth of 13 other serotypes: fractionation of oleic albumin complex and a medium of bovine albumin and polysorbate 80. . Am J Vet Res 26:, 45–51.[PubMed]
    [Google Scholar]
  11. Eshghi A., Lourdault K., Murray G. L., Bartpho T., Sermswan R. W., Picardeau M., Adler B., Snarr B., Zuerner R. L.. & other authors ( 2012;). Leptospira interrogans catalase is required for resistance to H2O2 and for virulence. . Infect Immun 80:, 3892–3899. [CrossRef][PubMed]
    [Google Scholar]
  12. Faine S. B., Adler B., Bolin C., Perolat P.. ( 1999;). Leptospira and leptospirosis, , 2nd edn.. Melbourne:: MediSci;.
    [Google Scholar]
  13. Galloway R. L., Levett P. N.. ( 2008;). Evaluation of a modified pulsed-field gel electrophoresis approach for the identification of Leptospira serovars. . Am J Trop Med Hyg 78:, 628–632.[PubMed]
    [Google Scholar]
  14. Goldstein S. F., Charon N. W.. ( 1988;). Motility of the spirochete Leptospira.. Cell Motil Cytoskeleton 9:, 101–110. [CrossRef][PubMed]
    [Google Scholar]
  15. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. ( 2007;). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57:, 81–91. [CrossRef][PubMed]
    [Google Scholar]
  16. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef][PubMed]
    [Google Scholar]
  17. Haake D. A., Matsunaga J.. ( 2010;). Leptospira: a spirochaete with a hybrid outer membrane. . Mol Microbiol 77:, 805–814.[PubMed]
    [Google Scholar]
  18. Herrmann J. L., Bellenger E., Perolat P., Baranton G., Saint Girons I.. ( 1992;). Pulsed-field gel electrophoresis of NotI digests of leptospiral DNA: a new rapid method of serovar identification. . J Clin Microbiol 30:, 1696–1702.[PubMed]
    [Google Scholar]
  19. Hovind-Hougen K.. ( 1979;). Leptospiraceae, a new Family to include Leptospira Noguchi 1917 and Leptonema, gen. nov.. Int J Syst Bacteriol 29:, 245–251. [CrossRef]
    [Google Scholar]
  20. Johnson R. C., Harris V. G.. ( 1967;). Differentiation of pathogenic and saprophytic leptospires I. Growth at low temperatures. . J Bacteriol 94:, 27–31.[PubMed]
    [Google Scholar]
  21. Johnson R. C., Rogers P.. ( 1964;). Differentiation of pathogenic and saprophytic leptospires with 8-azaguanine. . J Bacteriol 88:, 1618–1623.[PubMed]
    [Google Scholar]
  22. Kmety E., Dikken H.. ( 1993;). Classification of the Species Leptospira interrogans and History of its Serovars. Groningen:: University Press;.
    [Google Scholar]
  23. Konstantinidis K. T., Tiedje J. M.. ( 2005;). Genomic insights that advance the species definition for prokaryotes. . Proc Natl Acad Sci U S A 102:, 2567–2572. [CrossRef][PubMed]
    [Google Scholar]
  24. Levett P. N., Morey R. E., Galloway R. L., Steigerwalt A. G.. ( 2006;). Leptospira broomii sp. nov., isolated from humans with leptospirosis. . Int J Syst Evol Microbiol 56:, 671–673. [CrossRef][PubMed]
    [Google Scholar]
  25. Mandel M., Marmur J.. ( 1968;). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. . Methods Enzymol 12B:, 195–206. [CrossRef]
    [Google Scholar]
  26. Matthias M. A., Ricaldi J. N., Cespedes M., Diaz M. M., Galloway R. L., Saito M., Steigerwalt A. G., Patra K. P., Ore C. V.. & other authors ( 2008;). Human leptospirosis caused by a new, antigenically unique Leptospira associated with a Rattus species reservoir in the Peruvian Amazon. . PLoS Negl Trop Dis 2:, e213. [CrossRef][PubMed]
    [Google Scholar]
  27. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M.. ( 2012;). Genome sequence-based species delimitation with confidence intervals and improved distance functions. . BMC Bioinformatics 14:, 60. [CrossRef][PubMed]
    [Google Scholar]
  28. Morey R. E., Galloway R. L., Bragg S. L., Steigerwalt A. G., Mayer L. W., Levett P. N.. ( 2006;). Species-specific identification of Leptospiraceae by 16S rRNA gene sequencing. . J Clin Microbiol 44:, 3510–3516. [CrossRef][PubMed]
    [Google Scholar]
  29. Nascimento A. L., Ko A. I., Martins E. A., Monteiro-Vitorello C. B., Ho P. L., Haake D. A., Verjovski-Almeida S., Hartskeerl R. A., Marques M. V.. & other authors ( 2004;). Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. . J Bacteriol 186:, 2164–2172. [CrossRef][PubMed]
    [Google Scholar]
  30. Paster B. J., Dewhirst F. E., Weisburg W. G., Tordoff L. A., Fraser G. J., Hespell R. B., Stanton T. B., Zablen L., Mandelco L., Woese C. R.. ( 1991;). Phylogenetic analysis of the spirochetes. . J Bacteriol 173:, 6101–6109.[PubMed]
    [Google Scholar]
  31. Perolat P., Chappel R. J., Adler B., Baranton G., Bulach D. M., Billinghurst M. L., Letocart M., Merien F., Serrano M. S.. ( 1998;). Leptospira fainei sp. nov., isolated from pigs in Australia. . Int J Syst Bacteriol 48:, 851–858. [CrossRef][PubMed]
    [Google Scholar]
  32. Picardeau M., Bulach D. M., Bouchier C., Zuerner R. L., Zidane N., Wilson P. J., Creno S., Kuczek E. S., Bommezzadri S.. & other authors ( 2008;). Genome sequence of the saprophyte Leptospira biflexa provides insights into the evolution of Leptospira and the pathogenesis of leptospirosis. . PLoS ONE 3:, e1607. [CrossRef][PubMed]
    [Google Scholar]
  33. Ramadass P., Jarvis B. D. W., Corner R. J., Penny D., Marshall R. B.. ( 1992;). Genetic characterization of pathogenic Leptospira species by DNA hybridization. . Int J Syst Bacteriol 42:, 215–219. [CrossRef][PubMed]
    [Google Scholar]
  34. Ren S. X., Fu G., Jiang X. G., Zeng R., Miao Y. G., Xu H., Zhang Y. X., Xiong H., Lu G.. & other authors ( 2003;). Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. . Nature 422:, 888–893. [CrossRef][PubMed]
    [Google Scholar]
  35. Ricaldi J. N., Fouts D. E., Selengut J. D., Harkins D. M., Patra K. P., Moreno A., Lehmann J. S., Purushe J., Sanka R.. & other authors ( 2012;). Whole genome analysis of Leptospira licerasiae provides insight into leptospiral evolution and pathogenicity. . PLoS Negl Trop Dis 6:, e1853. [CrossRef][PubMed]
    [Google Scholar]
  36. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  37. Saito M., Villanueva S. Y., Kawamura Y., Iida K. I., Tomida J., Kanemaru T., Kohno E., Miyahara S., Umeda A.. & other authors ( 2013;). Leptospira idonii sp. nov., isolated from environmental water. . Int J Syst Evol Microbiol 63:, 2457–2462. [CrossRef][PubMed]
    [Google Scholar]
  38. Schmid G. P., Steere A. C., Kornblatt A. N., Kaufmann A. F., Moss C. W., Johnson R. C., Hovind-Hougen K., Brenner D. J.. ( 1986;). Newly recognized Leptospira species (“Leptospira inadai” serovar lyme) isolated from human skin. . J Clin Microbiol 24:, 484–486.[PubMed]
    [Google Scholar]
  39. Slack A. T., Kalambaheti T., Symonds M. L., Dohnt M. F., Galloway R. L., Steigerwalt A. G., Chaicumpa W., Bunyaraksyotin G., Craig S.. & other authors ( 2008;). Leptospira wolffii sp. nov., isolated from a human with suspected leptospirosis in Thailand. . Int J Syst Evol Microbiol 58:, 2305–2308. [CrossRef][PubMed]
    [Google Scholar]
  40. Slack A. T., Khairani-Bejo S., Symonds M. L., Dohnt M. F., Galloway R. L., Steigerwalt A. G., Bahaman A. R., Craig S., Harrower B. J., Smythe L. D.. ( 2009;). Leptospira kmetyi sp. nov., isolated from an environmental source in Malaysia. . Int J Syst Evol Microbiol 59:, 705–708. [CrossRef][PubMed]
    [Google Scholar]
  41. Smythe L., Adler B., Hartskeerl R. A., Galloway R. L., Turenne C. Y., Levett P. N.. ( 2012;). Classification of Leptospira genomospecies 1, genomospecies 3, genomospecies 4 and genomospecies 5 as Leptospira alstonii sp. nov., Leptospira vanthielii sp. nov., Leptospira terpstrae sp. nov., Leptospira yanagawae sp. nov., respectively. . Int J Syst Evol Microbiol 63:, 1859–1862. [CrossRef][PubMed]
    [Google Scholar]
  42. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  43. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Ststematic Bacteriology. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  44. Wolf Y. I., Rogozin I. B., Grishin N. V., Tatusov R. L., Koonin E. V.. ( 2001;). Genome trees constructed using five different approaches suggest new major bacterial clades. . BMC Evol Biol 1:, 8. [CrossRef][PubMed]
    [Google Scholar]
  45. Yasuda P. H., Steigerwalt A. G., Sulzer K. R., Kaufmann A. F., Rogers F., Brenner D. J.. ( 1987;). Deoxyribonucleic acid relatedness between serogroups and serovars in the family Leptospiraceae with proposals for seven new Leptospira species. . Int J Syst Bacteriol 37:, 407–415. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.066597-0
Loading
/content/journal/ijsem/10.1099/ijs.0.066597-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error