1887

Abstract

A Gram-stain-positive, moderately halophilic bacterium, designated BH043, was isolated from saltern soil of Gomso in Korea. Cells were motile rods, producing ellipsoidal endospores at a terminal position in swollen sporangia. Strain BH043 was strictly aerobic, grew at pH 6.0–10.0 (optimal growth at pH 7.5), at 10–55 °C (optimal growth at 30 °C) and at salinities of 1–20 % (w/v) NaCl, growing optimally with 7 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain BH043 belongs to the family and was most closely related to the type strains of the five recognized species of the genus , showing sequence similarity to Y32 (97.5 % similarity), BH030004 (97.4 %), BH030062 (97.0 %), JSM 072002 (96.4 %) and JSM 076056 (96.2 %). The major cellular fatty acids of strain BH043 were iso-C and anteiso-C. The genomic DNA G+C content was 42.5 mol%. The major isoprenoid quinone was MK-7 and -diaminopimelic acid was present in the cell-wall peptidoglycan as the diagnostic diamino acid. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. DNA–DNA relatedness between strain BH043 and the type strains of other species of the genus , CGMCC 1.10680 and KCTC 3917 and KCTC 3890, was 35, 24 and 18 %, respectively. On the basis of polyphasic analysis from this study, strain BH043 represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is BH043 ( = KACC 17607 = NBRC 109831 = NCAIM B.02529).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.066423-0
2015-02-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/2/375.html?itemId=/content/journal/ijsem/10.1099/ijs.0.066423-0&mimeType=html&fmt=ahah

References

  1. Arahal D. R., Ventosa A.. ( 2002;). Moderately halophilic and halotolerant species of Bacillus and related genera. . In Applications and Systematics of Bacillus and Relatives, pp. 83–99. Edited by Berkeley R., Heyndrickx M., Logan N., De Vos P... Oxford:: Blackwell;. [CrossRef]
    [Google Scholar]
  2. Chen Y.-G., Zhang Y.-Q., Xiao H.-D., Liu Z. X., Yi L.-B., Shi J.-X., Zhi X.-Y., Cui X.-L., Li W.-J.. ( 2009;). Pontibacillus halophilus sp. nov., a moderately halophilic bacterium isolated from a sea urchin. . Int J Syst Evol Microbiol 59:, 1635–1639. [CrossRef][PubMed]
    [Google Scholar]
  3. Chen Y.-G., Zhang Y.-Q., Yi L.-B., Li Z.-Y., Wang Y.-X., Xiao H.-D., Chen Q.-H., Cui X.-L., Li W.-J.. ( 2010;). Pontibacillus litoralis sp. nov., a facultatively anaerobic bacterium isolated from a sea anemone, and emended description of the genus Pontibacillus. . Int J Syst Evol Microbiol 60:, 560–565. [CrossRef][PubMed]
    [Google Scholar]
  4. Collins M. D., Jones D.. ( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. . Microbiol Rev 45:, 316–354.[PubMed]
    [Google Scholar]
  5. Cowan S. T., Steel K. J.. ( 1965;). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  6. DeLong E. F.. ( 1992;). Archaea in coastal marine environments. . Proc Natl Acad Sci U S A 89:, 5685–5689. [CrossRef][PubMed]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. ( 1985;). Confidence limit on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  10. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  12. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  13. Lányí B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  14. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  15. Leifson E.. ( 1963;). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85:, 1183–1184.[PubMed]
    [Google Scholar]
  16. Lim J.-M., Jeon C. O., Song S. M., Kim C.-J.. ( 2005a;). Pontibacillus chungwhensis gen. nov., sp. nov., a moderately halophilic Gram-positive bacterium from a solar saltern in Korea. . Int J Syst Evol Microbiol 55:, 165–170. [CrossRef][PubMed]
    [Google Scholar]
  17. Lim J.-M., Jeon C. O., Park D.-J., Kim H.-R., Yoon B.-J., Kim C.-J.. ( 2005b;). Pontibacillus marinus sp. nov., a moderately halophilic bacterium from a solar saltern, and emended description of the genus Pontibacillus. . Int J Syst Evol Microbiol 55:, 1027–1031. [CrossRef][PubMed]
    [Google Scholar]
  18. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L.. & other authors ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59:, 2114–2121. [CrossRef][PubMed]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  20. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  21. Murray R. G. E., Doetsch R. N., Robinow F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  22. Parte A. C.. ( 2014;). List of prokaryotic names with standing in nomenclature. . http://www.bacterio.net
    [Google Scholar]
  23. Saito H., Miura K. I.. ( 1963;). Preparation of transforming deoxyribonucleic acid by phenol treatment. . Biochim Biophys Acta 72:, 619–629. [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  25. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  27. Ventosa A.. ( 2006;). Unusual micro-organisms from unusual habitats: hypersaline environments. . In Prokaryotic Diversity: Mechanisms and Significance, pp. 223–254. Edited by Logan N. A., Lappin-Scott H. M., Oyston P. C. F... Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  28. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A.. ( 1982;). Numerical taxonomy of moderately halophilic Gram-negative rods. . J Gen Microbiol 128:, 1959–1968.
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  30. Yang Y., Zou Z., He M., Wang G.. ( 2011;). Pontibacillus yanchengensis sp. nov., a moderately halophilic bacterium isolated from salt field soil. . Int J Syst Evol Microbiol 61:, 1906–1911. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.066423-0
Loading
/content/journal/ijsem/10.1099/ijs.0.066423-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error