1887

Abstract

A novel anaerobic propionigenic bacterium, strain ADRI, was isolated from sediment of an acid rock drainage environment (Tinto River, Spain). Cells were small (0.4–0.6×1–1.7 µm), non-motile and non-spore-forming rods. Cells possessed a Gram-negative cell-wall structure and were vancomycin-resistant. Strain ADRI utilized yeast extract and various sugars as substrates and formed propionate, lactate and acetate as major fermentation products. The optimum growth temperature was 30 °C and the optimum pH for growth was pH 6.5, but strain ADRI was able to grow at a pH as low as 3.0. Oxidase, indole formation, and urease and catalase activities were negative. Aesculin and gelatin were hydrolysed. The predominant cellular fatty acids of strain ADRI were anteiso-C (30.3 %), iso-C (29.2 %) and iso-C 3-OH (14.9 %). Major menaquinones were MK-8 (52 %) and MK-9 (48 %). The genomic DNA G+C content was 39.9 mol%. Phylogenetically, strain ADRI was affiliated to the family of the phylum . The most closely related cultured species were with 16S rRNA gene sequence similarity of 87.5 % and several species of the genus (similarities of 83.5–85.4 % to the type strains). Based on the distinctive ecological, phenotypic and phylogenetic characteristics of strain ADRI, a novel genus and species, gen. nov., sp. nov., is proposed. The type strain is ADRI ( = JCM 19374 = DSM 27471).

Funding
This study was supported by the:
  • European Research Council (Award 323009)
  • Netherlands Ministry of Education, Culture and Science
  • Netherlands Science Foundation (NWO) (Award 024.002.002)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.066241-0
2014-12-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/12/3936.html?itemId=/content/journal/ijsem/10.1099/ijs.0.066241-0&mimeType=html&fmt=ahah

References

  1. Akasaka H., Izawa T., Ueki K., Ueki A. ( 2003 ). Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil. . FEMS Microbiol Ecol 43, 149161. [View Article] [PubMed]
    [Google Scholar]
  2. Baker B. J., Banfield J. F. ( 2003 ). Microbial communities in acid mine drainage. . FEMS Microbiol Ecol 44, 139152. [View Article] [PubMed]
    [Google Scholar]
  3. Bijmans M. F. M., van Helvoort P. J., Dar S. A., Dopson M., Lens P. N. L., Buisman C. J. N. ( 2009 ). Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor. . Water Res 43, 853861. [View Article] [PubMed]
    [Google Scholar]
  4. Bijmans M. F. M., de Vries E., Yang C. H., N Buisman C. J., Lens P. N., Dopson M. ( 2010 ). Sulfate reduction at pH 4.0 for treatment of process and wastewaters. . Biotechnol Prog 26, 10291037.[PubMed]
    [Google Scholar]
  5. Chen S., Dong X. ( 2005 ). Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. . Int J Syst Evol Microbiol 55, 22572261. [View Article] [PubMed]
    [Google Scholar]
  6. Church C. D., Wilkin R. T., Alpers C. N., Rye R. O., McCleskey R. B. ( 2007 ). Microbial sulfate reduction and metal attenuation in pH 4 acid mine water. . Geochem Trans 8, 10. [View Article] [PubMed]
    [Google Scholar]
  7. Cline J. D. ( 1969 ). Spectrophotometric determination of hydrogen sulfide in natural waters. . Limnol Oceanogr 14, 454458. [View Article]
    [Google Scholar]
  8. Dann A. L., Cooper R. S., Bowman J. P. ( 2009 ). Investigation and optimization of a passively operated compost-based system for remediation of acidic, highly iron- and sulfate-rich industrial waste water. . Water Res 43, 23022316. [View Article] [PubMed]
    [Google Scholar]
  9. Doetsch R. ( 1981 ). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 2133. Edited by Gerhardt P., Murray R. D. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Philips G. B. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  10. Gaidos E., Marteinsson V., Thorsteinsson T., Jóhannesson T., Rúnarsson A. R., Stefansson A., Glazer B., Lanoil B., Skidmore M. & other authors ( 2009 ). An oligarchic microbial assemblage in the anoxic bottom waters of a volcanic subglacial lake. . ISME J 3, 486497. [View Article] [PubMed]
    [Google Scholar]
  11. Hiibel S. R., Pereyra L. P., Inman L. Y., Tischer A., Reisman D. J., Reardon K. F., Pruden A. ( 2008 ). Microbial community analysis of two field-scale sulfate-reducing bioreactors treating mine drainage. . Environ Microbiol 10, 20872097. [View Article] [PubMed]
    [Google Scholar]
  12. Hiibel S. R., Pereyra L. P., Breazeal M. V. R., Reisman D. J., Reardon K. F., Pruden A. ( 2011 ). Effect of organic substrate on the microbial community structure in pilot-scale sulfate-reducing biochemical reactors treating mine drainage. . Environ Eng Sci 28, 563572. [View Article]
    [Google Scholar]
  13. Hiraishi A., Matsuzawa Y., Kanbe T., Wakao N. ( 2000 ). Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments. . Int J Syst Evol Microbiol 50, 15391546. [View Article] [PubMed]
    [Google Scholar]
  14. Hofstad T., Olsen I., Eribe E. R., Falsen E., Collins M. D., Lawson P. A. ( 2000 ). Dysgonomonas gen. nov. to accommodate Dysgonomonas gadei sp. nov., an organism isolated from a human gall bladder, and Dysgonomonas capnocytophagoides (formerly CDC group DF-3). . Int J Syst Evol Microbiol 50, 21892195. [View Article] [PubMed]
    [Google Scholar]
  15. Johnson D. B., Hallberg K. B. ( 2008 ). Carbon, iron and sulfur metabolism in acidophilic micro-organisms. . Adv Microb Physiol 54, 201255. [View Article]
    [Google Scholar]
  16. Jones R. M., Hedrich S., Johnson D. B. ( 2013 ). Acidocella aromatica sp. nov.: an acidophilic heterotrophic alphaproteobacterium with unusual phenotypic traits. . Extremophiles 17, 841850. [View Article] [PubMed]
    [Google Scholar]
  17. Kishimoto N., Kosako Y., Tano T. ( 1991 ). Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. . Curr Microbiol 22, 17. [View Article]
    [Google Scholar]
  18. Kishimoto N., Kosako Y., Wakao N., Tano T., Hiraishi A. ( 1995 ). Transfer of Acidiphilium facilis and Acidiphilium aminolytica to the Genus Acidocella gen. nov., and emendation of the genus Acidiphilium . . Syst Appl Microbiol 18, 8591. [View Article]
    [Google Scholar]
  19. Lawson P. A., Falsen E., Inganäs E., Weyant R. S., Collins M. D. ( 2002 ). Dysgonomonas mossii sp. nov., from human sources. . Syst Appl Microbiol 25, 194197. [View Article] [PubMed]
    [Google Scholar]
  20. Lawson P. A., Carlson P., Wernersson S., Moore E. R., Falsen E. ( 2010 ). Dysgonomonas hofstadii sp. nov., isolated from a human clinical source. . Anaerobe 16, 161164. [View Article] [PubMed]
    [Google Scholar]
  21. Lindsay M. B., Wakeman K. D., Rowe O. F., Grail B. M., Ptacek C. J., Blowes D. W., Johnson D. B. ( 2011 ). Microbiology and geochemistry of mine tailings amended with organic carbon for passive treatment of pore water. . Geomicrobiol J 28, 229241. [View Article]
    [Google Scholar]
  22. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. & other authors ( 2004 ). arb: a software environment for sequence data. . Nucleic Acids Res 32, 13631371. [View Article] [PubMed]
    [Google Scholar]
  23. Miller L. T. ( 1982 ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16, 584586.[PubMed]
    [Google Scholar]
  24. Miyagawa E., Azuma R., Suto T. ( 1979 ). Cellular fatty acid composition in Gram-negative obligately anaerobic rods. . J Gen Appl Microbiol 25, 4151. [View Article]
    [Google Scholar]
  25. Moore L. V., Bourne D. M., Moore W. E. ( 1994 ). Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic Gram-negative bacilli. . Int J Syst Bacteriol 44, 338347. [View Article] [PubMed]
    [Google Scholar]
  26. Pruesse E., Peplies J., Glöckner F. O. ( 2012 ). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28, 18231829. [View Article] [PubMed]
    [Google Scholar]
  27. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  28. Sánchez-Andrea I., Rodríguez N., Amils R., Sanz J. L. ( 2011 ). Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content. . Appl Environ Microbiol 77, 60856093. [View Article] [PubMed]
    [Google Scholar]
  29. Sánchez-Andrea I., Stams A. J., Amils R., Sanz J. L. ( 2013 ). Enrichment and isolation of acidophilic sulfate-reducing bacteria from Tinto River sediments. . Environ Microbiol Rep 5, 672678.[PubMed]
    [Google Scholar]
  30. Sanz J. L., Rodríguez N., Díaz E. E., Amils R. ( 2011 ). Methanogenesis in the sediments of Rio Tinto, an extreme acidic river. . Environ Microbiol 13, 23362341. [View Article] [PubMed]
    [Google Scholar]
  31. Stams A. J. M., Van Dijk J. B., Dijkema C., Plugge C. M. ( 1993 ). Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. . Appl Environ Microbiol 59, 11141119.[PubMed]
    [Google Scholar]
  32. Tamaoka J., Komagata K. ( 1984 ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25, 125128. [View Article]
    [Google Scholar]
  33. Tindall B. ( 1990 ). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66, 199202. [View Article]
    [Google Scholar]
  34. Ueki A., Akasaka H., Suzuki D., Ueki K. ( 2006 ). Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. . Int J Syst Evol Microbiol 56, 3944. [View Article] [PubMed]
    [Google Scholar]
  35. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R. ( 2008 ). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31, 241250. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.066241-0
Loading
/content/journal/ijsem/10.1099/ijs.0.066241-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error