1887

Abstract

A facultatively anaerobic, non-pigmented, non-spore-forming bacterium was isolated from a littoral wetland of a boreal lake located on Valaam Island, northern Russia, and designated strain P105. Cells of this isolate were Gram-negative, non-motile rods coated by S-layers with p2 lattice symmetry. Sugars were the preferred growth substrates. Under anoxic conditions, strain P105 was capable of fermentation and dissimilatory Fe(III) reduction. End products of fermentation were acetate, propionate and H. Strain P105 was a mildly acidophilic, mesophilic organism, capable of growth at pH 4.0–7.2 (optimum pH 5.5–6.0) and at 4–35 °C (optimum at 20–28 °C). The major fatty acids were iso-C and Cω7; the cells also contained significant amounts of 13,16-dimethyl octacosanedioic acid (isodiabolic acid). The major polar lipids were phosphocholine and phosphoethanolamine; the quinone was MK-8. The G+C content of the DNA was 60.5 mol%. 16S rRNA gene sequence analysis showed that strain P105 belongs to subdivision 3 of the and is only distantly related (90 % sequence similarity) to the only currently characterized member of this subdivision, . The novel isolate differs from in its cell morphology and ability to grow under anoxic conditions and in the presence of iron- and nitrate-reducing capabilities as well as quinone and polar lipid compositions. These differences suggest that strain P105 represents a novel genus and species, for which the name gen. nov., sp. nov., is proposed. The type strain of is P105 ( = DSM 26340 = VKM B-2878).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.066175-0
2014-08-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/8/2857.html?itemId=/content/journal/ijsem/10.1099/ijs.0.066175-0&mimeType=html&fmt=ahah

References

  1. Blöthe M., Akob D. M., Kostka J. E., Göschel K., Drake H. L., Küsel K.. ( 2008;). pH gradient-induced heterogeneity of Fe(III)-reducing microorganisms in coal mining-associated lake sediments. . Appl Environ Microbiol 74:, 1019–1029. [CrossRef][PubMed]
    [Google Scholar]
  2. Coates J. D., Ellis D. J., Gaw C. V., Lovley D. R.. ( 1999;). Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. . Int J Syst Bacteriol 49:, 1615–1622. [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M. D.. ( 1985;). Analysis of isoprenoid quinones. . Methods Microbiol 18:, 329–366. [CrossRef]
    [Google Scholar]
  4. Coupland K., Johnson D. B.. ( 2008;). Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. . FEMS Microbiol Lett 279:, 30–35. [CrossRef][PubMed]
    [Google Scholar]
  5. Dedysh S. N.. ( 2011;). Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining gaps. . Front Microbiol 2:, 184. [CrossRef][PubMed]
    [Google Scholar]
  6. Dedysh S. N., Pankratov T. A., Belova S. E., Kulichevskaya I. S., Liesack W.. ( 2006;). Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. . Appl Environ Microbiol 72:, 2110–2117. [CrossRef][PubMed]
    [Google Scholar]
  7. Fagan R. P., Fairweather N. F.. ( 2014;). Biogenesis and functions of bacterial S-layers. . Nat Rev Microbiol 12:, 211–222. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1989;). phylip – phylogeny inference package (version 3.2). . Cladistics 5:, 164–166.
    [Google Scholar]
  9. Gerhardt P., Costilow R. N., Krieg N. R., Murray R. G. E., Nester E. W., Phillips G. B., Wood W. A.. (editors) ( 1981;). Manual of Methods for General Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  10. Hungate R. E.. ( 1969;). A roll tube method for cultivation of strict anaerobes. . Methods Microbiol 3B:, 117–132. [CrossRef]
    [Google Scholar]
  11. Jones G. A., Pickard M. D.. ( 1980;). Effect of titanium (III) citrate as reducing agent on growth of rumen bacteria. . Appl Environ Microbiol 39:, 1144–1147.[PubMed]
    [Google Scholar]
  12. Juretschko S., Loy A., Lehner A., Wagner M.. ( 2002;). The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. . Syst Appl Microbiol 25:, 84–99. [CrossRef][PubMed]
    [Google Scholar]
  13. Khmelenina V. N., Suzina N. E., Trotsenko Yu. A.. ( 2013;). Surface layers of methanotrophic bacteria. . Mikrobiologiia 82:, 529–541 (in Russian).
    [Google Scholar]
  14. Kulichevskaya I. S., Suzina N. E., Liesack W., Dedysh S. N.. ( 2010;). Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the Acidobacteria. . Int J Syst Evol Microbiol 60:, 301–306. [CrossRef][PubMed]
    [Google Scholar]
  15. Lin X., Green S., Tfaily M. M., Prakash O., Konstantinidis K. T., Corbett J. E., Chanton J. P., Cooper W. T., Kostka J. E.. ( 2012;). Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and fen environments of the Glacial Lake Agassiz Peatland. . Appl Environ Microbiol 78:, 7023–7031. [CrossRef][PubMed]
    [Google Scholar]
  16. Lovley D. R.. ( 2006;). Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. . In The Prokaryotes, , 3rd edn., vol. 2, pp. 635–658. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York:: Springer;. [CrossRef]
    [Google Scholar]
  17. Lovley D. R., Phillips E. J.. ( 1986;). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. . Appl Environ Microbiol 51:, 683–689.[PubMed]
    [Google Scholar]
  18. Lu S. P., Gischkat S., Reiche M., Akob D. M., Hallberg K. B., Küsel K.. ( 2010;). Ecophysiology of Fe-cycling bacteria in acidic sediments. . Appl Environ Microbiol 76:, 8174–8183. [CrossRef][PubMed]
    [Google Scholar]
  19. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  20. Owen R. J., Hill L. R., Lapage S. P.. ( 1969;). Determination of DNA base compositions from melting profiles in dilute buffers. . Biopolymers 7:, 503–516. [CrossRef][PubMed]
    [Google Scholar]
  21. Pankratov T. A., Ivanova A. O., Dedysh S. N., Liesack W.. ( 2011;). Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. . Environ Microbiol 13:, 1800–1814. [CrossRef][PubMed]
    [Google Scholar]
  22. Pankratov T. A., Kirsanova L. A., Kaparullina E. N., Kevbrin V. V., Dedysh S. N.. ( 2012;). Telmatobacter bradus gen. nov., sp. nov., a cellulolytic facultative anaerobe from subdivision 1 of the Acidobacteria, and emended description of Acidobacterium capsulatum Kishimoto et al. 1991. . Int J Syst Evol Microbiol 62:, 430–437. [CrossRef][PubMed]
    [Google Scholar]
  23. Pavkov-Keller T., Howorka S., Keller W.. ( 2011;). The structure of bacterial S-layer proteins. . Prog Mol Biol Transl Sci 103:, 73–130. [CrossRef][PubMed]
    [Google Scholar]
  24. Reynolds E. S.. ( 1963;). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. . J Cell Biol 17:, 208–212. [CrossRef][PubMed]
    [Google Scholar]
  25. Serkebaeva Y. M., Kim Y., Liesack W., Dedysh S. N.. ( 2013;). Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a northern wetland, with focus on poorly studied phyla and candidate divisions. . PLoS ONE 8:, e63994. [CrossRef][PubMed]
    [Google Scholar]
  26. Sinninghe Damsté J. S., Rijpstra W. I., Hopmans E. C., Weijers J. W. H., Foesel B. U., Overmann J., Dedysh S. N.. ( 2011;). 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. . Appl Environ Microbiol 77:, 4147–4154. [CrossRef][PubMed]
    [Google Scholar]
  27. Ward N. L., Challacombe J. F., Janssen P. H., Henrissat B., Coutinho P. M., Wu M., Xie G., Haft D. H., Sait M.. & other authors ( 2009;). Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. . Appl Environ Microbiol 75:, 2046–2056. [CrossRef][PubMed]
    [Google Scholar]
  28. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.066175-0
Loading
/content/journal/ijsem/10.1099/ijs.0.066175-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error