1887

Abstract

A Gram-stain-negative, strictly aerobic, rod- or oval-shaped, motile, non-spore-forming bacterium, designated strain CC-AMHB-3, was isolated from coastal surface seawater off Hualien, Taiwan. The novel strain showed high pairwise 16S rRNA gene sequence similarities to NBRC 101030 (96.5 %), LMG 24367 (96.4 %), SSK6-1 (96.2 %), TF-218 (96.2 %), CZ-AM5 (96.1 %) and other species of the family (≤95.9 %). However, strain CC-AMHB-3 formed a distinct phyletic lineage associated with CZ-AM5 during phylogenetic analyses. The polar lipid profile of strain CC-AMHB-3 included major amounts of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylcholine; moderate amounts of phosphatidylethanolamine, an unidentified aminolipid, an unidentified phospholipid and an unidentified lipid; and trace amounts of an unidentified lipid and an unidentified phospholipid, which was qualitatively almost in line with that of CZ-AM5 but remarkably distinct as compared with the type species of the genera ( JCM 21234) and ( JCM 21319). In line with the fatty acid profile of CZ-AM5, the major (>5 % of total) fatty acids of strain CC-AMHB-3 were Cω7 and/or Cω6 (summed feature 8), 11-methyl Cω7 and C. The DNA G+C content was 66.7 mol%. Ubiquinone-10 (Q-10) was the sole respiratory quinone. Thus, based on the results of the polyphasic study presented here, strain CC-AMHB-3 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed; the type strain is CC-AMHB-3 ( = JCM 19537 = BCRC 80695). In addition, an emended description of the genus is also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.066142-0
2014-11-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/11/3897.html?itemId=/content/journal/ijsem/10.1099/ijs.0.066142-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef] [PubMed]
    [Google Scholar]
  2. Buddruhs N. , Pradella S. , Göker M. , Päuker O. , Pukall R. , Spröer C. , Schumann P. , Petersen J. , Brinkhoff T. . ( 2013; ). Molecular and phenotypic analyses reveal the non-identity of the Phaeobacter gallaeciensis type strain deposits CIP 105210T and DSM 17395. . Int J Syst Evol Microbiol 63:, 4340–4349. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chen Z. , Liu Y. , Liu L.-Z. , Zhong Z.-P. , Liu Z.-P. , Liu Y. . ( 2014; ). Cribrihabitans marinus gen. nov., sp. nov., isolated from a biological filter in a marine recirculating aquaculture system. . Int J Syst Evol Microbiol 64:, 1257–1263. [CrossRef] [PubMed]
    [Google Scholar]
  4. Collins M. D. . ( 1985; ). Analysis of isoprenoid quinones. . Methods Microbiol 18:, 329–366. [CrossRef]
    [Google Scholar]
  5. Embley T. M. , Wait R. . ( 1994; ). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M. , O'Donnell A. G. . . Chichester:: Wiley;.
    [Google Scholar]
  6. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  7. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Fitch W. M. . ( 1971; ). Towards defining the course of evolution: minimum change for a specific tree topology. . Syst Biol 20:, 406–416. [CrossRef]
    [Google Scholar]
  9. Garrity G. M. , Bell J. A. , Lilburn T. . ( 2005; ). Family I. Rhodobacteraceae fam. nov. . In Bergey’s Mannual of Systematic Bacteriololgy , , 2nd edn., vol. 2, Part C, p. 161. Edited by Brenner D. J. , Krieg N. R. , Staley J. T. , Garrity G. M. . . New York:: Springer;.
    [Google Scholar]
  10. GCG ( 1995; ). Wisconsin Package Version 8.1 Program Manual. Madison, WI:: Computer Group;.
    [Google Scholar]
  11. Hameed A. , Shahina M. , Lin S.-Y. , Cho J. C. , Lai W.-A. , Young C.-C. . ( 2013; ). Kordia aquimaris sp. nov., a zeaxanthin-producing member of the family Flavobacteriaceae isolated from surface seawater, and emended description of the genus Kordia . . Int J Syst Evol Microbiol 63:, 4790–4796. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hameed A. , Shahina M. , Lin S.-Y. , Lai W.-A. , Hsu Y.-H. , Liu Y.-C. , Young C.-C. . ( 2014; ). Aquibacter zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from surface seawater, and emended descriptions of the genera Aestuariibaculum and Gaetbulibacter . . Int J Syst Evol Microbiol 64:, 138–145. [CrossRef] [PubMed]
    [Google Scholar]
  13. Heiner C. R. , Hunkapiller K. L. , Chen S. M. , Glass J. I. , Chen E. Y. . ( 1998; ). Sequencing multimegabase-template DNA with BigDye terminator chemistry. . Genome Res 8:, 557–561.[PubMed]
    [Google Scholar]
  14. Iwaki H. , Yasukawa N. , Fujioka M. , Takada K. , Hasegawa Y. . ( 2013; ). Isolation and characterization of a marine cyclohexylacetate-degrading bacterium Lutimaribacter litoralis sp. nov., and reclassification of Oceanicola pacificus as Lutimaribacter pacificus comb. nov.. Curr Microbiol 66:, 588–593. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kämpfer P. , Kroppenstedt R. M. . ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  16. Kim O.-S. , Cho Y.-J. , Lee K. , Yoon S.-H. , Kim M. , Na H. , Park S.-C. , Jeon Y. S. , Lee J.-H. . & other authors ( 2012a; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kim Y.-O. , Park S. , Nam B.-H. , Kang S.-J. , Hur Y. B. , Lee S.-J. , Oh T.-K. , Yoon J.-H. . ( 2012b; ). Ruegeria halocynthiae sp. nov., isolated from the sea squirt Halocynthia roretzi . . Int J Syst Evol Microbiol 62:, 925–930. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lai Q. , Yuan J. , Li F. , Zheng T. , Shao Z. . ( 2010; ). Ruegeria pelagia is a later heterotypic synonym of Ruegeria mobilis . . Int J Syst Evol Microbiol 60:, 1918–1920. [CrossRef] [PubMed]
    [Google Scholar]
  20. Martens T. , Heidorn T. , Pukall R. , Simon M. , Tindall B. J. , Brinkhoff T. . ( 2006; ). Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera . . Int J Syst Evol Microbiol 56:, 1293–1304. [CrossRef] [PubMed]
    [Google Scholar]
  21. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  22. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  23. Montero-Calasanz M. C. , Göker M. , Rohde M. , Spröer C. , Schumann P. , Busse H.-J. , Schmid M. , Tindall B. J. , Klenk H.-P. , Camacho M. . ( 2013; ). Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. . Int J Syst Evol Microbiol 63:, 4386–4395.[CrossRef]
    [Google Scholar]
  24. Muramatsu Y. , Uchino Y. , Kasai H. , Suzuki K. , Nakagawa Y. . ( 2007; ). Ruegeria mobilis sp. nov., a member of the Alphaproteobacteria isolated in Japan and Palau. . Int J Syst Evol Microbiol 57:, 1304–1309. [CrossRef] [PubMed]
    [Google Scholar]
  25. Murray R. G. E. , Doetsch R. N. , Robinow C. F. . ( 1994; ). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  26. Park S. , Park D.-S. , Bae K. S. , Yoon J.-H. . ( 2014; ). Phaeobacter aquaemixtae sp. nov., isolated from the junction between the ocean and a freshwater spring. . Int J Syst Evol Microbiol 64:, 1378–1383. [CrossRef] [PubMed]
    [Google Scholar]
  27. Rüger H. J. , Höfle M. G. . ( 1992; ). Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev.. Int J Syst Bacteriol 42:, 133–143. [CrossRef] [PubMed]
    [Google Scholar]
  28. Ruiz-Ponte C. , Cilia V. , Lambert C. , Nicolas J. L. . ( 1998; ). Roseobacter gallaeciensis sp. nov., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus . . Int J Syst Bacteriol 48:, 537–542. [CrossRef] [PubMed]
    [Google Scholar]
  29. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  30. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC Newsl 20:, 16.
    [Google Scholar]
  31. Shahina M. , Hameed A. , Lin S.-Y. , Hsu Y.-H. , Liu Y.-C. , Cheng I.-C. , Lee M.-R. , Lai W.-A. , Lee R.-J. , Young C.-C. . ( 2013; ). Sphingomicrobium astaxanthinifaciens sp. nov., an astaxanthin-producing glycolipid-rich bacterium isolated from surface seawater and emended description of the genus Sphingomicrobium . . Int J Syst Evol Microbiol 63:, 3415–3422. [CrossRef] [PubMed]
    [Google Scholar]
  32. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  33. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  34. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  35. Tindall B. J. , Rosselló-Móra R. , Busse H.-J. , Ludwig W. , Kämpfer P. . ( 2010; ). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef] [PubMed]
    [Google Scholar]
  36. Uchino Y. , Hirata A. , Yokota A. , Sugiyama J. . ( 1998; ). Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev.. J Gen Appl Microbiol 44:, 201–210. [CrossRef] [PubMed]
    [Google Scholar]
  37. Watts D. , MacBeath J. R. . ( 2001; ). Automated fluorescent DNA sequencing on the ABI PRISM 310 Genetic Analyzer. . Methods Mol Biol 167:, 153–170.[PubMed]
    [Google Scholar]
  38. Yoon J.-H. , Kang S.-J. , Lee S.-Y. , Oh T.-K. . ( 2007; ). Phaeobacter daeponensis sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. . Int J Syst Evol Microbiol 57:, 856–861. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.066142-0
Loading
/content/journal/ijsem/10.1099/ijs.0.066142-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error