1887

Abstract

A Gram-stain-negative, rod-shaped and non-endospore-forming bacterium, designated strain AG1-2, was isolated from collected from the Gawalong glacier in Tibet, China and characterized using a polyphasic taxonomic approach. The predominant fatty acids of strain AG1-2 were iso-C (36.0 %), iso-C 3-OH (20.2 %), summed feature 9 (iso-Cω9 and/or C 10-methyl, 16.4 %) and summed feature 3 (Cω7 and/or Cω6, 11.1 %). The major polar lipids were phosphatidylethanolamine, three unidentified aminolipids and two unidentified lipids. Strain AG1-2 contained MK-6 as the dominant menaquinone, and the genomic DNA G+C content was 37.3 mol%. The phylogenetic analysis based on the 16S rRNA gene sequences showed that strain AG1-2 was affiliated to species of the genus , and its closest related species were Soil-3-27, AG13, THG C4-1 and PHA3-4 with a sequence similarity of 98.0, 97.8, 97.3 and 97.1 %, respectively. However, the DNA–DNA relatedness values between these strains and strain AG1-2 were 29, 21, 21 and 45 %, respectively. Based on phylogenetic inference and phenotypic data, strain AG1-2 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is AG1-2 ( = CGMCC 1.12488 = DSM 26898).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.065888-0
2015-01-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/1/71.html?itemId=/content/journal/ijsem/10.1099/ijs.0.065888-0&mimeType=html&fmt=ahah

References

  1. Behrendt U., Ulrich A., Schumann P.. ( 2008;). Chryseobacterium gregarium sp. nov., isolated from decaying plant material. . Int J Syst Evol Microbiol 58:, 1069–1074. [CrossRef][PubMed]
    [Google Scholar]
  2. Bernardet J. F., Nakagawa Y., Holmes B..Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef][PubMed]
    [Google Scholar]
  3. Breznak J. A., Costilow R. N.. ( 2007;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, , 3rd edn., pp. 309–329. Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  4. De Ley J.. ( 1970;). Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. . J Bacteriol 101:, 738–754.[PubMed]
    [Google Scholar]
  5. Dong X.-Z., Cai M.-Y.. (editors) ( 2001;). Determination of biochemical properties. . In Mannual for Systematic Identification of General Bacteria, pp. 370–398. Beijing:: Science Press (in Chinese);.
    [Google Scholar]
  6. Gillis M., De Ley J., De Cleene M.. ( 1970;). The determination of molecular weight of bacterial genome DNA from renaturation rates. . Eur J Biochem 12:, 143–153. [CrossRef][PubMed]
    [Google Scholar]
  7. Kämpfer P., Dreyer U., Neef A., Dott W., Busse H.-J.. ( 2003;). Chryseobacterium defluvii sp. nov., isolated from wastewater. . Int J Syst Evol Microbiol 53:, 93–97. [CrossRef][PubMed]
    [Google Scholar]
  8. Kämpfer P., Vaneechoutte M., Lodders N., De Baere T., Avesani V., Janssens M., Busse H. J., Wauters G.. ( 2009;). Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. . Int J Syst Evol Microbiol 59:, 2421–2428. [CrossRef][PubMed]
    [Google Scholar]
  9. Kämpfer P., Arun A. B., Young C.-C., Chen W.-M., Sridhar K. R., Rekha P. D.. ( 2010;). Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. . Int J Syst Evol Microbiol 60:, 1765–1769. [CrossRef][PubMed]
    [Google Scholar]
  10. Kim K. K., Bae H. S., Schumann P., Lee S. T.. ( 2005;). Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. . Int J Syst Evol Microbiol 55:, 133–138. [CrossRef][PubMed]
    [Google Scholar]
  11. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  12. Kook M., Son H.-M., Ngo H. T. T., Yi T.-H.. ( 2014;). Chryseobacterium camelliae sp. nov., isolated from green tea. . Int J Syst Evol Microbiol 64:, 851–857. [CrossRef][PubMed]
    [Google Scholar]
  13. Kroppenstedt R. M.. ( 1982;). Separation of bacterial menaquinones by HPLC using reverse phase (Rp18) and a silver loaded ion exchanger as stationary phases. . J Liq Chromatogr 5:, 2359–2367. [CrossRef]
    [Google Scholar]
  14. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  15. Li Y. H., Liu Q. F., Liu Y., Zhu J. N., Zhang Q.. ( 2011;). Endophytic bacterial diversity in roots of Typha angustifolia L. in the constructed Beijing Cuihu Wetland (China). . Res Microbiol 162:, 124–131. [CrossRef][PubMed]
    [Google Scholar]
  16. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  17. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  18. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  19. Montero-Calasanz M. C., Göker M., Rohde M., Spröer C., Schumann P., Busse H.-J., Schmid M., Tindall B. J., Klenk H.-P., Camacho M.. ( 2013;). Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. . Int J Syst Evol Microbiol 63:, 4386–4395. [CrossRef][PubMed]
    [Google Scholar]
  20. Park M. S., Jung S. R., Lee K. H., Lee M. S., Do J. O., Kim S. B., Bae K. S.. ( 2006;). Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. . Int J Syst Evol Microbiol 56:, 433–438. [CrossRef][PubMed]
    [Google Scholar]
  21. Park Y. J., Son H. M., Lee E. H., Kim J. H., Mavlonov G. T., Choi K. J., Shin H. S., Kook M., Yi T. H.. ( 2013;). Chryseobacterium gwangjuense sp. nov., isolated from soil. . Int J Syst Evol Microbiol 63:, 4580–4585. [CrossRef][PubMed]
    [Google Scholar]
  22. Ruijssenaars H. J., Hartmans S.. ( 2001;). Plate screening methods for the detection of polysaccharase-producing microorganisms. . Appl Microbiol Biotechnol 55:, 143–149. [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  24. Sasser M.. ( 1990;). Identification of bacteria gas chromatography of cellular fatty acids. , MIDI Technical Note 101. Newark, DE: MIDI Inc.
    [Google Scholar]
  25. Shen F. T., Kämpfer P., Young C. C., Lai W. A., Arun A. B.. ( 2005;). Chryseobacterium taichungense sp. nov., isolated from contaminated soil. . Int J Syst Evol Microbiol 55:, 1301–1304. [CrossRef][PubMed]
    [Google Scholar]
  26. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  27. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J. et al. ( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef][PubMed]
    [Google Scholar]
  28. Tai C.-J., Kuo H.-P., Lee F.-L., Chen H.-K., Yokota A., Lo C.-C.. ( 2006;). Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. . Int J Syst Evol Microbiol 56:, 1771–1776. [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  30. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  31. Tindall B. J., Sikorski J., Smibert R. M., Kreig N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R... Washington, DC:: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
  32. Vandamme P., Bernardet J. F., Segers P., Kersters K., Holmes B.. ( 1994;). New perspectives in the classification of the flavobacteria - description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev.. Int J Syst Bacteriol 44:, 827–831. [CrossRef]
    [Google Scholar]
  33. Weon H.-Y., Kim B.-Y., Yoo S.-H., Kwon S.-W., Cho Y.-H., Go S.-J., Stackebrandt E.. ( 2006;). Chryseobacterium wanjuense sp. nov., isolated from greenhouse soil in Korea. . Int J Syst Evol Microbiol 56:, 1501–1504. [CrossRef][PubMed]
    [Google Scholar]
  34. Wu Y. F., Wu Q. L., Liu S. J.. ( 2013;). Chryseobacterium taihuense sp. nov., isolated from a eutrophic lake, and emended descriptions of the genus Chryseobacterium, Chryseobacterium taiwanense, Chryseobacterium jejuense and Chryseobacterium indoltheticum. . Int J Syst Evol Microbiol 63:, 913–919. [CrossRef][PubMed]
    [Google Scholar]
  35. Yoon J.-H., Kang S.-J., Oh T.-K.. ( 2007;). Chryseobacterium daeguense sp. nov., isolated from wastewater of a textile dye works. . Int J Syst Evol Microbiol 57:, 1355–1359. [CrossRef][PubMed]
    [Google Scholar]
  36. Zhou Y., Dong J., Wang X., Huang X., Zhang K. Y., Zhang Y. Q., Guo Y. F., Lai R., Li W. J.. ( 2007;). Chryseobacterium flavum sp. nov., isolated from polluted soil. . Int J Syst Evol Microbiol 57:, 1765–1769. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.065888-0
Loading
/content/journal/ijsem/10.1099/ijs.0.065888-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error