1887

Abstract

An anaerobic, rod-shaped, hyperthermophilic and acidophilic crenarchaeon, designated strain CBA1501, was isolated from solfataric soil of the Mayon volcano in the Republic of the Philippines. Phylogenetic analysis showed that strain CBA1501 is affiliated with the genus in the phylum . DNA sequence similarities between the 16S rRNA gene of strain CBA1501 and those of IC-017 and IC-059 were 98.5 and 97.4 %, respectively. Strain CBA1501 grew between 75–90 °C, over a pH range of 4.0–6.0 and in the presence of 0–1.0 % (w/v) NaCl, with optimal growth occurring at 85 °C, pH 5.0, and with 0 % (w/v) NaCl. Fumarate, malate, oxidized glutathione, sulfur and thiosulfate were used as final electron acceptors, but FeCl, nitrate and sulfate were not. The DNA G+C content of strain CBA1501 was 43.1 mol%. On the basis of polyphasic taxonomic analysis, strain CBA1501 represents a novel species of the genus in the phylum , for which we propose the name sp. nov. The type strain is CBA1501 ( = ATCC BAA-2415 = JCM 17228).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.065862-0
2015-01-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/1/201.html?itemId=/content/journal/ijsem/10.1099/ijs.0.065862-0&mimeType=html&fmt=ahah

References

  1. Cui H. L., Lin Z. Y., Dong Y., Zhou P. J., Liu S. J.. ( 2007;). Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. . Int J Syst Evol Microbiol 57:, 2204–2206. [CrossRef][PubMed]
    [Google Scholar]
  2. DeLong E. F.. ( 1992;). Archaea in coastal marine environments. . Proc Natl Acad Sci U S A 89:, 5685–5689. [CrossRef][PubMed]
    [Google Scholar]
  3. Euzéby J. P.. ( 1997;). List of bacterial names with standing in nomenclature: a folder available on the Internet. . Int J Syst Bacteriol 47:, 590–592. [CrossRef][PubMed]
    [Google Scholar]
  4. Ezaki T., Hashimoto H., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  6. González J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef][PubMed]
    [Google Scholar]
  7. Gumerov V. M., Mardanov A. V., Beletsky A. V., Prokofeva M. I., Bonch-Osmolovskaya E. A., Ravin N. V., Skryabin K. G.. ( 2011;). Complete genome sequence of “Vulcanisaeta moutnovskia” strain 768-28, a novel member of the hyperthermophilic crenarchaeal genus Vulcanisaeta. . J Bacteriol 193:, 2355–2356. [CrossRef][PubMed]
    [Google Scholar]
  8. Itoh T., Suzuki K., Nakase T.. ( 2002;). Vulcanisaeta distributa gen. nov., sp. nov., and Vulcanisaeta souniana sp. nov., novel hyperthermophilic, rod-shaped crenarchaeotes isolated from hot springs in Japan. . Int J Syst Evol Microbiol 52:, 1097–1104. [CrossRef][PubMed]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  10. Kluge A. G., Farris J. S.. ( 1969;). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  11. Lee H. W., Roh S. W., Shin N. R., Lee J., Whon T. W., Jung M. J., Yun J. H., Kim M. S., Hyun D. W.. & other authors ( 2013;). Blastopirellula cremea sp. nov., isolated from a dead ark clam. . Int J Syst Evol Microbiol 63:, 2314–2319. [CrossRef][PubMed]
    [Google Scholar]
  12. Meyer-Dombard D., Shock E., Amend J.. ( 2005;). Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. . Geobiology 3:, 211–227. [CrossRef]
    [Google Scholar]
  13. Parte A. C.. ( 2014;). LPSN–list of prokaryotic names with standing in nomenclature. . Nucleic Acids Res 42: (Database issue), D613–D616. [CrossRef][PubMed]
    [Google Scholar]
  14. Pruesse E., Peplies J., Glöckner F. O.. ( 2012;). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28:, 1823–1829. [CrossRef][PubMed]
    [Google Scholar]
  15. Roh S. W., Sung Y., Nam Y. D., Chang H. W., Kim K. H., Yoon J. H., Jeon C. O., Oh H. M., Bae J. W.. ( 2008;). Arthrobacter soli sp. nov., a novel bacterium isolated from wastewater reservoir sediment. . J Microbiol 46:, 40–44. [CrossRef][PubMed]
    [Google Scholar]
  16. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  17. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  18. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  19. Stetter K. O.. ( 1999;). Extremophiles and their adaptation to hot environments. . FEBS Lett 452:, 22–25. [CrossRef][PubMed]
    [Google Scholar]
  20. Stetter K. O.. ( 2006;). History of discovery of the first hyperthermophiles. . Extremophiles 10:, 357–362. [CrossRef][PubMed]
    [Google Scholar]
  21. Stetter K. O.. ( 2013;). A brief history of the discovery of hyperthermophilic life. . Biochem Soc Trans 41:, 416–420. [CrossRef][PubMed]
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.065862-0
Loading
/content/journal/ijsem/10.1099/ijs.0.065862-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error