1887

Abstract

A bacterial strain designated TNR-22 was isolated from a freshwater river in Taiwan and characterized using a polyphasic taxonomic approach. Cells of strain TNR-22 were facultatively anaerobic, Gram-stain-negative, rod-shaped, motile by a single polar flagellum and formed cream-coloured colonies. Growth occurred at 4–45 °C (optimum, 25–30 °C), with 0–1.0 % (w/v) NaCl (optimum, 0.5 %) and at pH 7.0–8.0 (optimum, pH 7.0). Strain TNR-22 did not form nodules on . The gene encoding denitrogenase reductase was not detected by PCR. The major fatty acids (>10 %) of strain TNR-22 were Cω7 and C. The DNA G+C content was 60.3 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, an uncharacterized aminoglycolipid and an uncharacterized phospholipid. Comparative analysis of 16S rRNA gene sequences showed that strain TNR-22 constituted a distinct branch within the genus , showing the highest level of sequence similarity with W3 (96.3 %). Phenotypic characteristics of the novel strain also differed from those of the most closely related species of the genus . On the basis of the genotypic, chemotaxonomic and phenotypic data, strain TNR-22 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is TNR-22 ( = BCRC 80408 = LMG 26895 = KCTC 23919).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.065706-0
2015-02-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/2/472.html?itemId=/content/journal/ijsem/10.1099/ijs.0.065706-0&mimeType=html&fmt=ahah

References

  1. Anzai Y. , Kudo Y. , Oyaizu H. . ( 1997; ). The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. . Int J Syst Bacteriol 47:, 249–251. [CrossRef] [PubMed]
    [Google Scholar]
  2. Beveridge T. J. , Lawrence J. R. , Murray R. G. E. . ( 2007; ). Sampling and staining for light microscopy. . In Methods for General and Molecular Bacteriology, , 3rd edn., pp. 19–33. Edited by Reddy C. A. , Beveridge T. J. , Breznak J. A. , Marzluf G. A. , Schmidt T. M. , Snyder L. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  3. Bowman J. P. . ( 2000; ). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50:, 1861–1868.[PubMed]
    [Google Scholar]
  4. Breznak J. A. , Costilow R. N. . ( 2007; ). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, , 3rd edn., pp. 309–329. Edited by Reddy C. A. , Beveridge T. J. , Breznak J. A. , Marzluf G. A. , Schmidt T. M. , Snyder L. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  5. Chen W. M. , Laevens S. , Lee T. M. , Coenye T. , De Vos P. , Mergeay M. , Vandamme P. . ( 2001; ). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. . Int J Syst Evol Microbiol 51:, 1729–1735. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chen W. M. , de Faria S. M. , Straliotto R. , Pitard R. M. , Simões-Araùjo J. L. , Chou J. H. , Chou Y. J. , Barrios E. , Prescott A. R. . & other authors ( 2005; ). Proof that Burkholderia strains form effective symbioses with legumes: a study of novel Mimosa-nodulating strains from South America. . Appl Environ Microbiol 71:, 7461–7471. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cole J. R. , Wang Q. , Cardenas E. , Fish J. , Chai B. , Farris R. J. , Kulam-Syed-Mohideen A. S. , McGarrell D. M. , Marsh T. . & other authors ( 2009; ). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. . Nucleic Acids Res 37: (Database issue), D141–D145. [CrossRef] [PubMed]
    [Google Scholar]
  8. Embley T. M. , Wait R. . ( 1994; ). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M. , O’Donnell A. G. . . Chichester:: Wiley;.
    [Google Scholar]
  9. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  10. Felsenstein J. . ( 1993; ). phylip (phylogeny inference package), version 3.5c. Distributed by the author. . Department of Genome Sciences, University of Washington;, Seattle, USA:.
  11. Frank B. . ( 1889; ). Über die Pilzsymbiose der Leguminosen. . Ber Dtsch Bot Ges 7:, 332–346 (in German).
    [Google Scholar]
  12. Gibson A. H. . ( 1963; ). Physical environment and symbiotic nitrogen fixation. I. The effect of root temperature on recently nodulated Trifolium subterraneum L. plants. . Aust J Biol Sci 16:, 28–42.
    [Google Scholar]
  13. Hall T. A. . ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  14. Hunter W. J. , Kuykendall L. D. , Manter D. K. . ( 2007; ). Rhizobium selenireducens sp. nov.: a selenite-reducing α-Proteobacteria isolated from a bioreactor. . Curr Microbiol 55:, 455–460. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kaur J. , Verma M. , Lal R. . ( 2011; ). Rhizobium rosettiformans sp. nov., isolated from a hexachlorocyclohexane dump site, and reclassification of Blastobacter aggregatus Hirsch and Muller 1986 as Rhizobium aggregatum comb. nov.. Int J Syst Evol Microbiol 61:, 1218–1225. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. . & other authors ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kimura M. . ( 1983; ). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  18. Kluge A. G. , Farris F. S. . ( 1969; ). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  19. Kuykendall L. D. . ( 2005; ). Family I. Rhizobiaceae Conn 1938, 321AL. In Bergey’s Manual of Systematic Bacteriololgy, 2nd edn, vol. 2, Part C. , pp. 324–361. Edited by Brenner D. J. , Krieg N. R. , Staley J. T. , Garrity G. M. . . New York:: Springer;.
  20. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  21. Nokhal T. H. , Schlegel H. G. . ( 1983; ). Taxonomic study of Paracoccus denitrificans . . Int J Syst Bacteriol 33:, 26–37. [CrossRef]
    [Google Scholar]
  22. Poly F. , Monrozier L. J. , Bally R. . ( 2001; ). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. . Res Microbiol 152:, 95–103. [CrossRef] [PubMed]
    [Google Scholar]
  23. Powers E. M. . ( 1995; ). Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. . Appl Environ Microbiol 61:, 3756–3758.[PubMed]
    [Google Scholar]
  24. Quan Z. X. , Bae H. S. , Baek J. H. , Chen W. F. , Im W. T. , Lee S. T. . ( 2005; ). Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. . Int J Syst Evol Microbiol 55:, 2543–2549. [CrossRef] [PubMed]
    [Google Scholar]
  25. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  26. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  27. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  28. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  29. Tighe S. W. , de Lajudie P. , Dipietro K. , Lindström K. , Nick G. , Jarvis B. D. . ( 2000; ). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. . Int J Syst Evol Microbiol 50:, 787–801. [CrossRef] [PubMed]
    [Google Scholar]
  30. Tindall B. J. , Sikorski J. , Smibert R. M. , Krieg N. R. . ( 2007; ). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Bacteriology, , 3rd edn., pp. 330–393. Edited by Reddy C. A. , Beveridge T. J. , Breznak J. A. , Marzluf G. A. , Schmidt T. M. , Snyder L. R. . . Washington, DC:: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
  31. Weisburg W. G. , Barns S. M. , Pelletier D. A. , Lane D. J. . ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  32. Young J. M. , Kuykendall L. D. , Martínez-Romero E. , Kerr A. , Sawada H. . ( 2001; ). A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis . . Int J Syst Evol Microbiol 51:, 89–103.[PubMed] [CrossRef]
    [Google Scholar]
  33. Zani S. , Mellon M. T. , Collier J. L. , Zehr J. P. . ( 2000; ). Expression of nifH genes in natural microbial assemblages in Lake George, New York, detected by reverse transcriptase PCR. . Appl Environ Microbiol 66:, 3119–3124. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.065706-0
Loading
/content/journal/ijsem/10.1099/ijs.0.065706-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error