1887

Abstract

A bacterial strain designated CMJ-15 was isolated from a freshwater shrimp culture pond in Taiwan and characterized using a polyphasic taxonomic approach. Cells of strain CMJ-15 were facultatively anaerobic, Gram-stain-negative and motile by a single polar flagellum and formed light-yellow colonies. Growth occurred at 20–40 °C (optimum, 25–30 °C), with 0–0.7 % NaCl (optimum, 0–0.2 %) and at pH 5.0–9.0 (optimum, pH 6.0–7.0). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain CMJ-15 belonged to the genus and its closest neighbour was EM 1, with sequence similarity of 96.3 %. The predominant cellular fatty acids were summed feature 3 (Cω7 and/or Cω6), C and Cω7. The major cellular hydroxy fatty acid was C 3-OH. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The polyamine profile was composed of the major compound putrescine and moderate amounts of 2-hydroxyputrescine. The major respiratory quinone was Q-8 and the DNA G+C content was 52.2 mol%. On the basis of these phylogenetic and phenotypic data, strain CMJ-15 should be classified as representing a novel species, for which the name sp. nov. is proposed. The type strain is CMJ-15 ( = BCRC 80404 = LMG 26892 = KCTC 23917).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.065185-0
2014-10-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/10/3459.html?itemId=/content/journal/ijsem/10.1099/ijs.0.065185-0&mimeType=html&fmt=ahah

References

  1. Beveridge T. J., Lawrence J. R., Murray R. G. E.. ( 2007;). Sampling and staining for light microscopy. . In Methods for General and Molecular Bacteriology, , 3rd edn., pp. 19–33. Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  2. Bowman J. P.. ( 2000;). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50:, 1861–1868.[PubMed]
    [Google Scholar]
  3. Breznak J. A., Costilow R. N.. ( 2007;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, , 3rd edn., pp. 309–329. Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  4. Busse H.-J., Auling G.. ( 1988;). Polyamine pattern as chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  5. Busse H.-J., Bunka S., Hensel A., Lubitz W.. ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47:, 698–708. [CrossRef]
    [Google Scholar]
  6. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P.. ( 2001;). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. . Int J Syst Evol Microbiol 51:, 1729–1735. [CrossRef][PubMed]
    [Google Scholar]
  7. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T.. & other authors ( 2009;). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. . Nucleic Acids Res 37: (Database issue), D141–D145. [CrossRef][PubMed]
    [Google Scholar]
  8. Collins M. D.. ( 1994;). Isoprenoid quinones. . In Chemical Methods in Prokaryotic Systematics, pp. 265–309. Edited by Goodfellow M., O’Donnell A. G... Chichester:: Wiley;.
    [Google Scholar]
  9. Eder W., Wanner G., Ludwig W., Busse H.-J., Ziemke-Kägeler F., Lang E.. ( 2011;). Description of Undibacterium oligocarboniphilum sp. nov., isolated from purified water, and Undibacterium pigrum strain CCUG 49012 as the type strain of Undibacterium parvum sp. nov., and emended descriptions of the genus Undibacterium and the species Undibacterium pigrum. . Int J Syst Evol Microbiol 61:, 384–391. [CrossRef][PubMed]
    [Google Scholar]
  10. Embley T. M., Wait R.. ( 1994;). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M., O’Donnell A. G... Chichester:: Wiley;.
    [Google Scholar]
  11. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  12. Felsenstein J.. ( 1993;). phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington;, Seattle, USA:.
  13. Garrity G. M., Bell J. A., Lilburn T.. ( 2005;). Family II. Oxalobacteraceae fam. nov.. In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2C, p. 623. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M... New York:: Springer;.
    [Google Scholar]
  14. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  15. Kämpfer P., Rosselló-Mora R., Hermansson M., Persson F., Huber B., Falsen E., Busse H.-J.. ( 2007;). Undibacterium pigrum gen. nov., sp. nov., isolated from drinking water. . Int J Syst Evol Microbiol 57:, 1510–1515. [CrossRef][PubMed]
    [Google Scholar]
  16. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  17. Kim S. J., Moon J. Y., Weon H. Y., Hong S. B., Seok S. J., Kwon S. W.. ( 2014;). Undibacterium jejuense sp. nov. and Undibacterium seohonense sp. nov., isolated from soil and freshwater, respectively. . Int J Syst Evol Microbiol 64:, 236–241. [CrossRef][PubMed]
    [Google Scholar]
  18. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  19. Kluge A. G., Farris F. S.. ( 1969;). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  20. Liu Y. Q., Wang B. J., Zhou N., Liu S. J.. ( 2013;). Undibacterium terreum sp. nov., isolated from permafrost soil. . Int J Syst Evol Microbiol 63:, 2296–2300. [CrossRef][PubMed]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  22. Nokhal T. H., Schlegel H. G.. ( 1983;). Taxonomic study of Paracoccus denitrificans. . Int J Syst Bacteriol 33:, 26–37. [CrossRef]
    [Google Scholar]
  23. Powers E. M.. ( 1995;). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. . Appl Environ Microbiol 61:, 3756–3758.[PubMed]
    [Google Scholar]
  24. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  25. Sasser, M. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
  26. Schlegel H. G., Lafferty R., Krauss I.. ( 1970;). The isolation of mutants not accumulating poly-β-hydroxybutyric acid. . Arch Mikrobiol 71:, 283–294. [CrossRef][PubMed]
    [Google Scholar]
  27. Sheu S. Y., Lin Y. S., Chen J. C., Chen W. M.. ( 2014;). Undibacterium macrobrachii sp. nov., isolated from a freshwater shrimp culture pond. . Int J Syst Evol Microbiol 64:, 1036–1042. [CrossRef][PubMed]
    [Google Scholar]
  28. Spiekermann P., Rehm B. H. A., Kalscheuer R., Baumeister D., Steinbüchel A.. ( 1999;). A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. . Arch Microbiol 171:, 73–80. [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  31. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Bacteriology, , 3rd edn., pp. 330–393. Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R... Washington, DC:: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.065185-0
Loading
/content/journal/ijsem/10.1099/ijs.0.065185-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error