1887

Abstract

A novel Gram-staining-negative, motile, non-pigmented, facultatively anaerobic, spirillum-shaped, halophilic and alkaliphilic bacterium, designated strain GCWy1, was isolated from water of the coastal–marine wetland Gomishan in Iran. The strain was able to grow at NaCl concentrations of 1–10 % (w/v) and optimal growth was achieved at 3 % (w/v). The optimum pH and temperature for growth were pH 8.5 and 30 °C, while the strain was able to grow at pH 7.5–10 and 4–40 °C. Phylogenetic analysis based on the comparison of the 16S rRNA gene sequence placed the isolate within the class as a separate deep branch, with 92.1 % or lower sequence similarity to representatives of the genera and and less than 91.0 % sequence similarity with other remotely related genera. The major cellular fatty acids of the isolate were Cω7, C and C, and the major components of its polar lipid profile were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The cells of strain GCWy1 contained the isoprenoid quinones Q-9 and Q-8 (81 % and 2 %, respectively). The G+C content of the genomic DNA of this strain was 52.3 mol%. On the basis of 16S rRNA gene sequence analysis in combination with chemotaxonomic and phenotypic data, strain GCWy1 represents a novel species in a new genus in the family ‘ ’, order , for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is GCWy1 ( = IBRC-M 10765 = CECT 8342).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.065144-0
2014-11-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/11/3610.html?itemId=/content/journal/ijsem/10.1099/ijs.0.065144-0&mimeType=html&fmt=ahah

References

  1. Atlas R. M.. ( 2005;). Media for Environmental Microbiology, , 2nd edn.. Boca Raton, FL:: Taylor and Francis;.
    [Google Scholar]
  2. Baron E. J., Finegold S. M.. ( 1990;). Bailey and Scott’s Diagnostic Microbiology, , 8th edn.. St. Louis, MO:: Mosby;.
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  4. Chen Y. G., Cui X. L., Li Q. Y., Wang Y. X., Tang S. K., Liu Z. X., Wen M. L., Peng Q., Xu L. H.. ( 2009;). Saccharospirillum salsuginis sp. nov., a gammaproteobacterium from a subterranean brine. . Int J Syst Evol Microbiol 59:, 1382–1386. [CrossRef][PubMed]
    [Google Scholar]
  5. Choi A., Cho J. C.. ( 2010;). Reinekea aestuarii sp. nov., isolated from tidal flat sediment. . Int J Syst Evol Microbiol 60:, 2813–2817. [CrossRef][PubMed]
    [Google Scholar]
  6. Choi A., Oh H. M., Cho J. C.. ( 2011;). Saccharospirillum aestuarii sp. nov., isolated from tidal flat sediment, and an emended description of the genus Saccharospirillum. . Int J Syst Evol Microbiol 61:, 487–492. [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Garrity G. M., Bell J. A., Lilburn T.. ( 2005;). Order VIII. Oceanospirillales ord. nov.. In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2B, p. 270. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M... New York:: Springer;. [CrossRef]
    [Google Scholar]
  10. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A.. ( 1996;). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. . Int J Syst Bacteriol 46:, 234–239. [CrossRef][PubMed]
    [Google Scholar]
  11. Harrigan W. F., McCance M. E.. ( 1976;). Laboratory Methods in Food and Dairy Microbiology. London:: Academic Press;.
    [Google Scholar]
  12. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  14. Labrenz M., Lawson P. A., Tindall B. J., Collins M. D., Hirsch P.. ( 2003;). Saccharospirillum impatiens gen. nov., sp. nov., a novel γ-Proteobacterium isolated from hypersaline Ekho Lake (East Antarctica). . Int J Syst Evol Microbiol 53:, 653–660. [CrossRef][PubMed]
    [Google Scholar]
  15. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  16. Lau K. W. K., Ren J., Wai N. L. M., Lau S. C. L., Qian P. Y., Wong P. K., Wu M.. ( 2006;). Marinomonas ostreistagni sp. nov., isolated from a pearl-oyster culture pond in Sanya, Hainan Province, China. . Int J Syst Evol Microbiol 56:, 2271–2275. [CrossRef][PubMed]
    [Google Scholar]
  17. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  18. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V.. ( 2002;). A detailed phenotypic characterisation of the type strains of Halomonas species. . Syst Appl Microbiol 25:, 360–375. [CrossRef][PubMed]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  20. Miyazaki M., Nogi Y., Fujiwara Y., Kawato M., Kubokawa K., Horikoshi K.. ( 2008;). Neptunomonas japonica sp. nov., an Osedax japonicus symbiont-like bacterium isolated from sediment adjacent to sperm whale carcasses off Kagoshima, Japan. . Int J Syst Evol Microbiol 58:, 866–871. [CrossRef][PubMed]
    [Google Scholar]
  21. Monciardini P., Cavaletti L., Schumann P., Rohde M., Donadio S.. ( 2003;). Conexibacter woesei gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria. . Int J Syst Evol Microbiol 53:, 569–576. [CrossRef][PubMed]
    [Google Scholar]
  22. Murray R. G. E., Doetsch R. N., Robinow C. F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  23. Pinhassi J., Pujalte M. J., Macián M. C., Lekunberri I., González J. M., Pedrós-Alió C., Arahal D. R.. ( 2007;). Reinekea blandensis sp. nov., a marine, genome-sequenced gammaproteobacterium. . Int J Syst Evol Microbiol 57:, 2370–2375. [CrossRef][PubMed]
    [Google Scholar]
  24. Quesada E., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A.. ( 1984;). Deleya halophila, a new species of moderately halophilic bacteria. . Int J Syst Bacteriol 34:, 287–292. [CrossRef]
    [Google Scholar]
  25. Romanenko L. A., Schumann P., Rohde M., Mikhailov V. V., Stackebrandt E.. ( 2004;). Reinekea marinisedimentorum gen. nov., sp. nov., a novel gammaproteobacterium from marine coastal sediments. . Int J Syst Evol Microbiol 54:, 669–673. [CrossRef][PubMed]
    [Google Scholar]
  26. Rzhetsky A., Nei M.. ( 1992;). A simple method for estimating and testing minimum-evolution trees. . Mol Biol Evol 9:, 945–967.
    [Google Scholar]
  27. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  28. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  29. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  31. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A.. ( 1982;). Numerical taxonomy of moderately halophilic Gram-negative rods. . J Gen Microbiol 128:, 1959–1968.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.065144-0
Loading
/content/journal/ijsem/10.1099/ijs.0.065144-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error