1887

Abstract

Several strains of aerobic, acidophilic, chemo-organotrophic bacteria belonging to the genus were isolated from an acid mine drainage (AMD) (pH 2.2) treatment plant. 16S rRNA gene sequence comparisons showed that most of the novel isolates formed a phylogenetically coherent group (designated Group Ia) distinguishable from any of the previously established species of the genus at <98 % similarity. This was supported by genomic DNA–DNA hybridization assays. The Group Ia isolates were characterized phenotypically by an oval cell morphology, non-motility, growth in the range pH 2.0–5.5 (optimum pH 3.5), lack of photosynthetic pigment and the presence of C cyclo ω8 as the main component of the cellular fatty acids and ubiquinone-10 as the major quinone. On the basis of these data, the name sp. nov. is proposed to accommodate the Group Ia isolates, and the description of the genus is emended. The type strain of sp. nov. is MS8 ( = NBRC 107608 = KCTC 23505).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.065052-0
2015-01-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/1/42.html?itemId=/content/journal/ijsem/10.1099/ijs.0.065052-0&mimeType=html&fmt=ahah

References

  1. Bilgin A. A., Silverstein J., Jenkins J. D.. ( 2004;). Iron respiration by Acidiphilium cryptum at pH 5. . FEMS Microbiol Ecol 49:, 137–143. [CrossRef][PubMed]
    [Google Scholar]
  2. Blöthe M., Akob D. M., Kostka J. E., Göschel K., Drake H. L., Küsel K.. ( 2008;). pH gradient-induced heterogeneity of Fe(III)-reducing microorganisms in coal mining-associated lake sediments. . Appl Environ Microbiol 74:, 1019–1029. [CrossRef][PubMed]
    [Google Scholar]
  3. Coupland K., Johnson D. B.. ( 2008;). Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. . FEMS Microbiol Lett 279:, 30–35. [CrossRef][PubMed]
    [Google Scholar]
  4. Dopson M., Baker-Austin C., Hind A., Bowman J. P., Bond P. L.. ( 2004;). Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. . Appl Environ Microbiol 70:, 2079–2088. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  8. Heinzel E., Hedrich S., Janneck E., Glombitza F., Seifert J., Schlömann M.. ( 2009;). Bacterial diversity in a mine water treatment plant. . Appl Environ Microbiol 75:, 858–861. [CrossRef][PubMed]
    [Google Scholar]
  9. Hiraishi A.. ( 1992;). Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. . Lett Appl Microbiol 15:, 210–213. [CrossRef][PubMed]
    [Google Scholar]
  10. Hiraishi A., Imhoff J. F.. ( 2005;). Acidiphilium Harrison 1981, 331VP emend. Kishimoto, Kosako, Wakao, Tano and Hiraishi 1995b, 90. . In Bergey’s Mannual of Systematic Bacteriololgy, , 2nd edn., vol. 2, Part C, pp. 54–62. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M... New York:: Springer;. [CrossRef]
    [Google Scholar]
  11. Hiraishi A., Kitamura H.. ( 1984;). Distribution of phototrophic purple nonsulfur bacteria in activated sludge systems and other aquatic environments. . Bull Jpn Soc Sci Fish 50:, 1929–1937. [CrossRef]
    [Google Scholar]
  12. Hiraishi A., Shimada K.. ( 2001;). Aerobic anoxygenic photosynthetic bacteria with zinc-bacteriochlorophyll. . J Gen Appl Microbiol 47:, 161–180. [CrossRef][PubMed]
    [Google Scholar]
  13. Hiraishi A., Ueda Y., Ishihara J., Mori T.. ( 1996;). Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. . J Gen Appl Microbiol 42:, 457–469. [CrossRef]
    [Google Scholar]
  14. Hiraishi A., Nagashima K. V. P., Matsuura K., Shimada K., Takaichi S., Wakao N., Katayama Y.. ( 1998;). Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov.. Int J Syst Bacteriol 48:, 1389–1398. [CrossRef][PubMed]
    [Google Scholar]
  15. Johnson D. B.. ( 1998;). Biodiversity and ecology of acidophilic microorganisms. . FEMS Microbiol Ecol 27:, 307–317. [CrossRef]
    [Google Scholar]
  16. Johnson D. B., Hallberg K. B.. ( 2003;). The microbiology of acidic mine waters. . Res Microbiol 154:, 466–473. [CrossRef][PubMed]
    [Google Scholar]
  17. Johnson D. B., McGinness S.. ( 1991;). Ferric iron reduction by acidophilic heterotrophic bacteria. . Appl Environ Microbiol 57:, 207–211.[PubMed]
    [Google Scholar]
  18. Johnson D. B., Ghauri M. A., McGinness S.. ( 1993;). Biogeochemical cycling of iron and sulphur in leaching environments. . FEMS Microbiol Rev 11:, 63–70. [CrossRef]
    [Google Scholar]
  19. Kaksonen A. H., Dopson M., Karnachuk O., Tuovinen O. H., Puhakka J. A.. ( 2008;). Biological iron oxidation and sulfate reduction in the treatment of acid mine drainage at low temperatures. . In Psychrophiles: from Biodiversity to Biotechnology, pp. 429–454. Edited by Margesin R., Schinner F., Marx J.-C., Gerday C... Berlin:: Springer;. [CrossRef]
    [Google Scholar]
  20. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  21. Kishimoto N., Kosako Y., Tano T.. ( 1993;). Acidiphilium aminolytica sp. nov.: an acidophilic chemoorganotrophic bacterium isolated from acidic mineral environment. . Curr Microbiol 27:, 131–136. [CrossRef][PubMed]
    [Google Scholar]
  22. Kishimoto N., Fukaya F., Inagaki K., Sugio T., Tanaka H., Tano T.. ( 1995a;). Distribution of bacteriochlorophyll a among aerobic and acidophilic bacteria and light-enhanced CO2-incorporation in Acidiphilium rubrum. . FEMS Microbiol Ecol 16:, 291–296. [CrossRef]
    [Google Scholar]
  23. Kishimoto N., Kosako Y., Wakao N., Tano M., Hiraishi A.. ( 1995b;). Transfer of Acidiphilium facilis and Acidiphilium aminolytica to the genus Acidocella gen. nov. and emendation of the genus Acidiphilium. . Syst Appl Microbiol 18:, 85–91. [CrossRef]
    [Google Scholar]
  24. Küsel K., Dorsch T., Acker G., Stackebrandt E.. ( 1999;). Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. . Appl Environ Microbiol 65:, 3633–3640.[PubMed]
    [Google Scholar]
  25. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic acid techniques in bacterial systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... New York:: Wiley;.
    [Google Scholar]
  26. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. ( 2007;). Clustal W and Clustal X version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  27. Magnuson T. S., Swenson M. W., Paszczynski A. J., Deobald L. A., Kerk D., Cummings D. E.. ( 2010;). Proteogenomic and functional analysis of chromate reduction in Acidiphilium cryptum JF-5, an Fe(III)-respiring acidophile. . Biometals 23:, 1129–1138. [CrossRef][PubMed]
    [Google Scholar]
  28. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  29. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  30. Okamura K., Takata K., Hiraishi A.. ( 2009;). Intrageneric relationships of members of the genus Rhodopseudomonas. . J Gen Appl Microbiol 55:, 469–478. [CrossRef][PubMed]
    [Google Scholar]
  31. Okamura K., Kawai A., Yamada T., Hiraishi A.. ( 2011;). Acidipila rosea gen. nov., sp. nov., an acidophilic chemoorganotrophic bacterium belonging to the phylum Acidobacteria. . FEMS Microbiol Lett 317:, 138–142. [CrossRef][PubMed]
    [Google Scholar]
  32. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  33. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE: MIDI Inc.
    [Google Scholar]
  34. Schrenk M. O., Edwards K. J., Goodman R. M., Hamers R. J., Banfield J. F.. ( 1998;). Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. . Science 279:, 1519–1522. [CrossRef][PubMed]
    [Google Scholar]
  35. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  36. Urakami T., Tamaoka J., Suzuki K., Kazuo Komagata K.. ( 1989;). Acidomonas gen. nov., incorporating Acetobacter methanolicus as Acidomonas methanolica comb. nov.. Int J Syst Bacteriol 39:, 50–55. [CrossRef]
    [Google Scholar]
  37. Wakao N., Nagasawa N., Matsuura T., Matsukura H., Matsumoto T., Hiraishi A., Sakurai Y., Shiota H.. ( 1994;). Acidiphilium multivorum sp. nov., an acidophilic chemoorganotrophic bacterium from pyritic acid mine drainage. . J Gen Appl Microbiol 40:, 143–159. [CrossRef]
    [Google Scholar]
  38. Wakao N., Yasuda T., Jojima Y., Yamanaka S., Hiraishi A.. ( 2002;). Enhanced growth of Acidocella facilis and related acidophilic bacteria at high concentrations of aluminum. . Microbes Environ 17:, 98–104. [CrossRef]
    [Google Scholar]
  39. Wang Q., Garrity G. M., Tiedje J. M., Cole J. R.. ( 2007;). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. . Appl Environ Microbiol 73:, 5261–5267. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.065052-0
Loading
/content/journal/ijsem/10.1099/ijs.0.065052-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error