1887

Abstract

A novel methanogenic archaeon, strain MC-15, was isolated from a floating biofilm on a sulphurous subsurface lake in Movile Cave (Mangalia, Romania). Cells were non-motile sarcina-like cocci with a diameter of 2–4 µm, occurring in aggregates. The strain was able to grow autotrophically on H/CO. Additionally, acetate, methanol, monomethylamine, dimethylamine and trimethylamine were utilized, but not formate or dimethyl sulfide. Trypticase peptone and yeast extract were not required for growth. Optimal growth was observed at 33 °C, pH 6.5 and a salt concentration of 0.05 M NaCl. The predominant membrane lipids of MC-15 were archaeol and hydroxyarchaeol phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylinositol as well as hydroxyarchaeol phosphatidylserine and archaeol glycosaminyl phosphatidylinositol. The closely related species, and , had a similar composition of major membrane lipids to strain MC-15. The 16S rRNA gene sequence of strain MC-15 was similar to those of DSM 1232 (sequence similarity 99.3 %), HB-1 (98.8 %), DSM 800 (98.7 %) and T4/M (98.4 %). DNA–DNA hybridization revealed 43.3 % relatedness between strain MC-15 and DSM 1232. The G+C content of the genomic DNA was 39.0 mol%. Based on physiological, phenotypic and genotypic differences, strain MC-15 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MC-15 ( = DSM 26047 = JCM 18469).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.064956-0
2014-10-01
2019-11-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/10/3478.html?itemId=/content/journal/ijsem/10.1099/ijs.0.064956-0&mimeType=html&fmt=ahah

References

  1. Boone D. R. , Johnson R. L. , Liu Y. . ( 1989; ). Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. . Appl Environ Microbiol 55:, 1735–1741.[PubMed]
    [Google Scholar]
  2. Chen Y. , Wu L. , Boden R. , Hillebrand A. , Kumaresan D. , Moussard H. , Baciu M. , Lu Y. , Colin Murrell J. . ( 2009; ). Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. . ISME J 3:, 1093–1104. [CrossRef] [PubMed]
    [Google Scholar]
  3. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  4. Delong E. F. . ( 1992; ). Archaea in coastal marine environments. . PNAS 89:, 5685–5689.[CrossRef]
    [Google Scholar]
  5. Falniowski A. , Szarowska M. , Sirbu I. , Hillebrand A. , Baciu M. . ( 2008; ). Heleobia dobrogica (Grossu & Negrea, 1989)(Gastropoda: Rissooidea: Cochliopidae), and the estimated time of its isolation in a continental analogue of hydrothermal vents. . Molluscan Res 28:, 165–170.
    [Google Scholar]
  6. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  7. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  9. Hales B. A. , Edwards C. , Ritchie D. A. , Hall G. , Pickup R. W. , Saunders J. R. . ( 1996; ). Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. . Appl Environ Microbiol 62:, 668–675.[PubMed]
    [Google Scholar]
  10. Hershberger K. L. , Barns S. M. , Reysenbach A.-L. , Dawson S. C. , Pace N. R. . ( 1996; ). Wide diversity of Crenarchaeota. . Nature 384:, 420.[CrossRef]
    [Google Scholar]
  11. Hilpert R. , Winter J. , Hannes W. , Kandler O. . ( 1981; ). The sensitivity of archaebacteria to antibiotics. . Zentralbl Bakteriol Mikrobiol Hyg 2:, 11–20.
    [Google Scholar]
  12. Huss V. A. R. , Festl H. , Schleifer K. H. . ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hutchens E. , Radajewski S. , Dumont M. G. , McDonald I. R. , Murrell J. C. . ( 2004; ). Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. . Environ Microbiol 6:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  14. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. . & other authors ( 2004; ). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  15. Lyimo T. J. , Pol A. , Op den Camp H. J. M. , Harhangi H. R. , Vogels G. D. . ( 2000; ). Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment. . Int J Syst Evol Microbiol 50:, 171–178. [CrossRef] [PubMed]
    [Google Scholar]
  16. Mesbah M. , Permachandran U. , Whitman W. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bac 39:, 159–167. [CrossRef]
    [Google Scholar]
  17. Morozova D. , Wagner D. . ( 2007; ). Stress response of methanogenic archaea from Siberian permafrost compared with methanogens from nonpermafrost habitats. . FEMS Microbiol Ecol 61:, 16–25. [CrossRef] [PubMed]
    [Google Scholar]
  18. Ni S. S. , Boone D. R. . ( 1991; ). Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae . . Int J Syst Bacteriol 41:, 410–416. [CrossRef] [PubMed]
    [Google Scholar]
  19. Powell G. E. . ( 1983; ). Interpreting gas kinetics of batch culture. . Biotechnol Lett 5:, 437–440.[CrossRef]
    [Google Scholar]
  20. Pruesse E. , Quast C. , Knittel K. , Fuchs B. M. , Ludwig W. , Peplies J. , Glöckner F. O. . ( 2007; ). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb . . Nucleic Acids Res 35:, 7188–7196. [CrossRef] [PubMed]
    [Google Scholar]
  21. Rohwerder T. , Sand W. , Lascu C. . ( 2003; ). Preliminary evidence for a sulfur cycle in Movile Cave, Romania. . Acta Biotechnol 23:, 101–107. [CrossRef]
    [Google Scholar]
  22. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. Sarbu S. M. . ( 2000; ). Movile Cave: a chemoautotrophically based groundwater ecosystem. . In Subterranean Ecosystems, pp. 319–343. Edited by Wilkens H. , Culver D. C. , Humphreys W. F. . . Amsterdam:: Elsevier;.
    [Google Scholar]
  24. Sarbu S. M. , Kane T. C. . ( 1995; ). A subterranean chemoautotrophically based ecosystem. . NSS Bull 57:, 91–98.
    [Google Scholar]
  25. Sarbu S. M. , Kinkle B. K. , Vlasceanu L. , Kane T. C. , Popa R. . ( 1994; ). Microbiological characterization of a sulfide-rich groundwater ecosystem. . Geomicrobiol J 12:, 175–182. [CrossRef]
    [Google Scholar]
  26. Sarbu S. M. , Kane T. C. , Kinkle B. K. . ( 1996; ). A chemoautotrophically based cave ecosystem. . Science 272:, 1953–1955. [CrossRef] [PubMed]
    [Google Scholar]
  27. Schirmack J. , Mangelsdorf K. , Ganzert L. , Sand W. , Hillebrand-Voiculescu A. , Wagner D. . ( 2014; ). Methanobacterium movilense sp. nov., a hydrogenotrophic, secondary-alcohol-utilizing methanogen from the anoxic sediment of a subsurface lake. . Int J Syst Evol Microbiol 64:, 522–527. [CrossRef] [PubMed]
    [Google Scholar]
  28. Shimizu S. , Upadhye R. , Ishijima Y. , Naganuma T. . ( 2011; ). Methanosarcina horonobensis sp. nov., a methanogenic archaeon isolated from a deep subsurface Miocene formation. . Int J Syst Evol Microbiol 61:, 2503–2507. [CrossRef] [PubMed]
    [Google Scholar]
  29. Simankova M. V. , Parshina S. N. , Tourova T. P. , Kolganova T. V. , Zehnder A. J. B. , Nozhevnikova A. N. . ( 2001; ). Methanosarcina lacustris sp. nov., a new psychrotolerant methanogenic archaeon from anoxic lake sediments. . Syst Appl Microbiol 24:, 362–367. [CrossRef] [PubMed]
    [Google Scholar]
  30. Sowers K. R. , Baron S. F. , Ferry J. G. . ( 1984; ). Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. . Appl Environ Microbiol 47:, 971–978.[PubMed]
    [Google Scholar]
  31. Steinberg L. M. , Regan J. M. . ( 2008; ). Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. . Appl Environ Microbiol 74:, 6663–6671. [CrossRef] [PubMed]
    [Google Scholar]
  32. Süssmuth R. , Eberspächer J. , Haag R. , Springer W. . ( 1999; ). Mikrobiologisch-Biochemisches Praktikum, , 2nd edn.. Stuttgart:: Georg Thieme;.
    [Google Scholar]
  33. Tamaoka J. , Komagata K. . ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  34. Tindall B. J. , Rosselló-Móra R. , Busse H.-J. , Ludwig W. , Kämpfer P. . ( 2010; ). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef] [PubMed]
    [Google Scholar]
  35. Vlasceanu L. , Popa R. , Kinkle B. K. . ( 1997; ). Characterization of Thiobacillus thioparus LV43 and its distribution in a chemoautotrophically based groundwater ecosystem. . Appl Environ Microbiol 63:, 3123–3127.[PubMed]
    [Google Scholar]
  36. von Klein D. , Arab H. , Völker H. , Thomm M. . ( 2002; ). Methanosarcina baltica, sp. nov., a novel methanogen isolated from the Gotland Deep of the Baltic Sea. . Extremophiles 6:, 103–110. [CrossRef] [PubMed]
    [Google Scholar]
  37. Wagner D. , Schirmack J. , Ganzert L. , Morozova D. , Mangelsdorf K. . ( 2013; ). Methanosarcina soligelidi sp. nov., a desiccation- and freeze-thaw-resistant methanogenic archaeon from a Siberian permafrost-affected soil. . Int J Syst Evol Microbiol 63:, 2986–2991. [CrossRef] [PubMed]
    [Google Scholar]
  38. Zhilina T. N. , Zavarzin G. A. . ( 1987; ). Methanosarcina vacuolata sp. nov., a vacuolated Methanosarcina. . Int J Syst Bacteriol 37:, 281–283.[CrossRef]
    [Google Scholar]
  39. Zinder S. H. , Sowers K. R. , Ferry J. G. . ( 1985; ). Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium. . Int J Syst Bacteriol 35:, 522–523. [CrossRef]
    [Google Scholar]
  40. Zink K.-G. , Mangelsdorf K. . ( 2004; ). Efficient and rapid method for extraction of intact phospholipids from sediments combined with molecular structure elucidation using LC-ESI-MS-MS analysis. . Anal Bioanal Chem 380:, 798–812.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.064956-0
Loading
/content/journal/ijsem/10.1099/ijs.0.064956-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error