1887

Abstract

A novel Gram-stain-negative bacteria, designated S37, was isolated from soil of the Xixi wetland, Zhejiang province, China. Cells of strain S37 were aerobic, non-motile rods. Growth occurred at 10–37 °C (optimum, 25 °C), pH 5.0–9.7 (optimum, pH 7.5) and with 0–6 % (w/v) NaCl (optimum, 0.5 %). Based on 16S rRNA gene sequence analysis, strain S37 was found to be a member of the genus and shared highest similarity with 4M24 (95.78 %). The major fatty acids were summed feature 3 (iso-C 2-OH and/or Cω7), iso-C and iso-C 3-OH, and the DNA G+C content was 43.8 mol%. The predominant respiratory quinone was MK-7. Based on its phenotypic and chemotaxonomic characteristics and phylogenetic data, strain S37 represents a novel species of the genus , for which the name sp. nov. (type strain S37 = CGMCC 1.12801 = NBRC 110386) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.064915-0
2014-10-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/10/3453.html?itemId=/content/journal/ijsem/10.1099/ijs.0.064915-0&mimeType=html&fmt=ahah

References

  1. Albert R. A. , Waas N. E. , Pavlons S. C. , Pearson J. L. , Ketelboeter L. , Rosselló-Móra R. , Busse H. J. . ( 2013; ). Sphingobacterium psychroaquaticum sp. nov., a psychrophilic bacterium isolated from Lake Michigan water. . Int J Syst Evol Microbiol 63:, 952–958. [CrossRef] [PubMed]
    [Google Scholar]
  2. Choi H. A. , Lee S. S. . ( 2012; ). Sphingobacterium kyonggiense sp. nov., isolated from chloroethene-contaminated soil, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium mizutaii . . Int J Syst Evol Microbiol 62:, 2559–2564. [CrossRef] [PubMed]
    [Google Scholar]
  3. Dong X. Z. , Cai M. Y. . ( 2001; ). Common Manual of Systematic Bacteriology. Beijing:: Science Press;.
    [Google Scholar]
  4. Duan S. , Liu Z. , Feng X. , Zheng K. , Cheng L. . ( 2009; ). Sphingobacterium bambusae sp. nov., isolated from soil of bamboo plantation. . J Microbiol 47:, 693–698. [CrossRef] [PubMed]
    [Google Scholar]
  5. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  6. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. He X. , Xiao T. , Kuang H. , Lan X. , Tudahong M. , Osman G. , Fang C. , Rahman E. . ( 2010; ). Sphingobacterium shayense sp. nov., isolated from forest soil. . Int J Syst Evol Microbiol 60:, 2377–2381. [CrossRef] [PubMed]
    [Google Scholar]
  8. Huang Y. L. , Ki J. S. , Case R. , Qian P. Y. . ( 2008; ). Diversity and acylhomoserine lactone production among subtidal biofilm forming bacteria. . Aquat Microb Ecol 52:, 185–193. [CrossRef]
    [Google Scholar]
  9. Huo Y. Y. , Xu X. W. , Cui H. L. , Wu M. . ( 2010; ). Gracilibacillus ureilyticus sp. nov., a halotolerant bacterium from a saline-alkaline soil. . Int J Syst Evol Microbiol 60:, 1383–1386. [CrossRef] [PubMed]
    [Google Scholar]
  10. Jiang S. , Chen M. , Su S. , Yang M. , Li A. , Zhang C. , Lin M. , Zhang W. , Luo X. . ( 2014; ). Sphingobacterium arenae sp. nov., isolated from sandy soil. . Int J Syst Evol Microbiol 64:, 248–253. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kim K. H. , Ten L. N. , Liu Q. M. , Im W. T. , Lee S. T. . ( 2006; ). Sphingobacterium daejeonense sp. nov., isolated from a compost sample. . Int J Syst Evol Microbiol 56:, 2031–2036. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  13. Komagata K. , Suzuki K. . ( 1987; ). Lipids and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  14. Kuykendall L. D. , Roy M. A. , O'Neill J. J. , Devine T. E. . ( 1988; ). Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol 38:, 358–361.[CrossRef]
    [Google Scholar]
  15. Lee D. H. , Hur J. S. , Kahng H. Y. . ( 2013; ). Sphingobacterium cladoniae sp. nov., isolated from lichen, Cladonia sp., and emended description of Sphingobacterium siyangense . . Int J Syst Evol Microbiol 63:, 755–760. [CrossRef] [PubMed]
    [Google Scholar]
  16. Liu R. , Liu H. , Zhang C. X. , Yang S. Y. , Liu X. H. , Zhang K. Y. , Lai R. . ( 2008; ). Sphingobacterium siyangense sp. nov., isolated from farm soil. . Int J Syst Evol Microbiol 58:, 1458–1462. [CrossRef] [PubMed]
    [Google Scholar]
  17. Liu J. , Yang L. L. , Xu C. K. , Xi J. Q. , Yang F. X. , Zhou F. , Zhou Y. , Mo M. H. , Li W. J. . ( 2012; ). Sphingobacterium nematocida sp. nov., a nematicidal endophytic bacterium isolated from tobacco. . Int J Syst Evol Microbiol 62:, 1809–1813. [CrossRef] [PubMed]
    [Google Scholar]
  18. Liu H. , Zhang J. , Chen D. , Cao L. , Lu P. , Wu Z. , Yang F. , Li S. , Hong Q. . ( 2013; ). Sphingobacterium changzhouense sp. nov., a bacterium isolated from a rice field. . Int J Syst Evol Microbiol 63:, 4515–4518. [CrossRef] [PubMed]
    [Google Scholar]
  19. Marqués A. M. , Burgos-Díaz C. , Aranda F. J. , Teruel J. A. , Manresa A. , Ortiz A. , Farfán M. . ( 2012; ). Sphingobacterium detergens sp. nov., a surfactant-producing bacterium isolated from soil. . Int J Syst Evol Microbiol 62:, 3036–3041. [CrossRef] [PubMed]
    [Google Scholar]
  20. Matsuyama H. , Katoh H. , Ohkushi T. , Satoh A. , Kawahara K. , Yumoto I. . ( 2008; ). Sphingobacterium kitahiroshimense sp. nov., isolated from soil. . Int J Syst Evol Microbiol 58:, 1576–1579. [CrossRef] [PubMed]
    [Google Scholar]
  21. Mehnaz S. , Weselowski B. , Lazarovits G. . ( 2007; ). Sphingobacterium canadense sp. nov., an isolate from corn roots. . Syst Appl Microbiol 30:, 519–524. [CrossRef] [PubMed]
    [Google Scholar]
  22. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  23. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  24. Schmidt V. S. J. , Wenning M. , Scherer S. . ( 2012; ). Sphingobacterium lactis sp. nov. and Sphingobacterium alimentarium sp. nov., isolated from raw milk and a dairy environment. . Int J Syst Evol Microbiol 62:, 1506–1511. [CrossRef] [PubMed]
    [Google Scholar]
  25. Shivaji S. , Ray M. K. , Shyamala Rao N. , Saisree L. , Jagannadham M. V. , Seshu Kumar G. , Reddy G. S. N. , Bhargava P. M. . ( 1992; ). Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. . Int J Syst Bacteriol 42:, 102–106. [CrossRef]
    [Google Scholar]
  26. Steyn P. L. , Segers P. , Vancanneyt M. , Sandra P. , Kersters K. , Joubert J. J. . ( 1998; ). Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov.. Int J Syst Bacteriol 48:, 165–177. [CrossRef] [PubMed]
    [Google Scholar]
  27. Sun L. N. , Zhang J. , Chen Q. , He J. , Li S. P. . ( 2013; ). Sphingobacterium caeni sp. nov., isolated from activated sludge. . Int J Syst Evol Microbiol 63:, 2260–2264. [CrossRef] [PubMed]
    [Google Scholar]
  28. Takeuchi M. , Yokota A. . ( 1992; ). Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov., and two genospecies of the genus Sphingobacterium and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum . . J Gen Appl Microbiol 38:, 465–482. [CrossRef]
    [Google Scholar]
  29. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  30. Ten L. N. , Liu Q. M. , Im W. T. , Aslam Z. , Lee S. T. . ( 2006; ). Sphingobacterium composti sp. nov., a novel DNase-producing bacterium isolated from compost. . J Microbiol Biotechnol 16:, 1728–1733.
    [Google Scholar]
  31. Wauters G. , Janssens M. , De Baere T. , Vaneechoutte M. , Deschaght P. . ( 2012; ). Isolates belonging to CDC group II-i belong predominantly to Sphingobacterium mizutaii Yabuuchi et al. 1983: emended descriptions of S. mizutaii and of the genus Sphingobacterium . . Int J Syst Evol Microbiol 62:, 2598–2601. [CrossRef] [PubMed]
    [Google Scholar]
  32. Wei W. , Zhou Y. , Wang X. , Huang X. , Lai R. . ( 2008; ). Sphingobacterium anhuiense sp. nov., isolated from forest soil. . Int J Syst Evol Microbiol 58:, 2098–2101. [CrossRef] [PubMed]
    [Google Scholar]
  33. Xiao T. , He X. , Cheng G. , Kuang H. , Ma X. , Yusup K. , Hamdun M. , Gulsimay A. , Fang C. , Rahman E. . ( 2013; ). Sphingobacterium hotanense sp. nov., isolated from soil of a Populus euphratica forest, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium shayense . . Int J Syst Evol Microbiol 63:, 815–820. [CrossRef] [PubMed]
    [Google Scholar]
  34. Yabe S. , Aiba Y. , Sakai Y. , Hazaka M. , Kawahara K. , Yokota A. . ( 2013; ). Sphingobacterium thermophilum sp. nov., of the phylum Bacteroidetes, isolated from compost. . Int J Syst Evol Microbiol 63:, 1584–1588. [CrossRef] [PubMed]
    [Google Scholar]
  35. Yabuuchi E. , Kaneko T. , Yano I. , Moss C. W. , Miyoshi N. . ( 1983; ). Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose nonfermenting Gram-negative rods in CDC groups IIK-2 and IIb. . Int J Syst Bacteriol 33:, 580–598. [CrossRef]
    [Google Scholar]
  36. Yoo S. H. , Weon H. Y. , Jang H. B. , Kim B. Y. , Kwon S. W. , Go S. J. , Stackebrandt E. . ( 2007; ). Sphingobacterium composti sp. nov., isolated from cotton-waste composts. . Int J Syst Evol Microbiol 57:, 1590–1593. [CrossRef] [PubMed]
    [Google Scholar]
  37. Zhang J. , Zheng J. W. , Cho B. C. , Hwang C. Y. , Fang C. , He J. , Li S. P. . ( 2012; ). Sphingobacterium wenxiniae sp. nov., a cypermethrin-degrading species from activated sludge. . Int J Syst Evol Microbiol 62:, 683–687. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.064915-0
Loading
/content/journal/ijsem/10.1099/ijs.0.064915-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error