1887

Abstract

A Gram-stain-negative, non-motile, mesophilic, aerobic, rod-shaped bacterium, strain 2-9, was isolated from surface seawater at Muroto city, Kochi prefecture, Japan. The strain was transparent on 1/5 strength marine broth plate but became easily visible when the plate was supplemented with pyruvate. Phylogenetic analyses based on the 16S rRNA gene sequence showed that the strain fell within the class and was most closely related to the genus (92.7–93.0 % 16S rRNA gene sequence similarities to type strains of species of this genus) of an unclassified order within this class. The DNA G+C content of strain 2-9 was 41.7 mol%. The major fatty acids were Cω7 (37.6 %), Cω7 and/or iso-C 2-OH (summed feature 3; 19.1 %), C (10.8 %), C (10.2 %) and an unidentified fatty acid with an equivalent chain-length value of 11.799 (9.5 %). The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine and three unidentified lipids. Ubiquinone-8 (Q-8) was detected as the sole isoprenoid quinone. From these taxonomic data, it is proposed that strain 2-9 represents a novel species of a new genus, gen. nov., sp. nov. The type strain of the type species is 2-9 ( = NBRC 110144 = KCTC 42196). A new family, fam. nov. (type genus ), and order, ord. nov., of the class are proposed to accommodate the novel taxon.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.064683-0
2015-02-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/2/353.html?itemId=/content/journal/ijsem/10.1099/ijs.0.064683-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef][PubMed]
    [Google Scholar]
  2. Barrow G. I., Feltham R. K. A.. (editors) ( 1993;). Cowan and Steel's Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  3. DeLong E. F., Preston C. M., Mincer T., Rich V., Hallam S. J., Frigaard N. U., Martinez A., Sullivan M. B., Edwards R.. & other authors ( 2006;). Community genomics among stratified microbial assemblages in the ocean’s interior. . Science 311:, 496–503. [CrossRef][PubMed]
    [Google Scholar]
  4. Dyksterhouse S. E., Gray J. P., Herwig R. P., Lara J. C., Staley J. T.. ( 1995;). Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. . Int J Syst Bacteriol 45:, 116–123. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Hansman R. L., Griffin S., Watson J. T., Druffel E. R., Ingalls A. E., Pearson A., Aluwihare L. I.. ( 2009;). The radiocarbon signature of microorganisms in the mesopelagic ocean. . Proc Natl Acad Sci U S A 106:, 6513–6518. [CrossRef][PubMed]
    [Google Scholar]
  8. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T.. ( 1984;). Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. . Agric Biol Chem 48:, 3169–3172. [CrossRef]
    [Google Scholar]
  9. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). Clustal W and Clustal X version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  10. Leifson E.. ( 1963;). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85:, 1183–1184.[PubMed]
    [Google Scholar]
  11. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  12. Nedashkovskaya O. I., Cleenwerck I., Zhukova N. V., Kim S. B., de Vos P.. ( 2013;). Arenicella chitinivorans sp. nov., a gammaproteobacterium isolated from the sea urchin Strongylocentrotus intermedius. . Int J Syst Evol Microbiol 63:, 4124–4129. [CrossRef][PubMed]
    [Google Scholar]
  13. Nishijima M., Araki-Sakai M., Sano H.. ( 1997;). Identification of isoprenoid quinones by frit-FAB liquid chromatography–mass spectrometry for the chemotaxonomy of microorganisms. . J Microbiol Methods 28:, 113–122. [CrossRef]
    [Google Scholar]
  14. Romanenko L. A., Tanaka N., Frolova G. M., Mikhailov V. V.. ( 2010;). Arenicella xantha gen. nov., sp. nov., a gammaproteobacterium isolated from a marine sandy sediment. . Int J Syst Evol Microbiol 60:, 1832–1836. [CrossRef][PubMed]
    [Google Scholar]
  15. Saito H., Miura K. I.. ( 1963;). Preparation of transforming deoxyribonucleic acid by phenol treatment. . Biochim Biophys Acta 72:, 619–629. [CrossRef][PubMed]
    [Google Scholar]
  16. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  17. Takaichi S., Shimada K.. ( 1992;). Characterization of carotenoids in photosynthetic bacteria. . Methods Enzymol 213:, 374–385. [CrossRef]
    [Google Scholar]
  18. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). MEGA6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  19. Teramoto M., Suzuki M., Okazaki F., Hatmanti A., Harayama S.. ( 2009;). Oceanobacter-related bacteria are important for the degradation of petroleum aliphatic hydrocarbons in the tropical marine environment. . Microbiology 155:, 3362–3370. [CrossRef][PubMed]
    [Google Scholar]
  20. Teramoto M., Ohuchi M., Hatmanti A., Darmayati Y., Widyastuti Y., Harayama S., Fukunaga Y.. ( 2011;). Oleibacter marinus gen. nov., sp. nov., a bacterium that degrades petroleum aliphatic hydrocarbons in a tropical marine environment. . Int J Syst Evol Microbiol 61:, 375–380. [CrossRef][PubMed]
    [Google Scholar]
  21. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  22. Yarza P., Richter M., Peplies J., Euzéby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31:, 241–250. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.064683-0
Loading
/content/journal/ijsem/10.1099/ijs.0.064683-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error