1887

Abstract

A Gram-staining-negative, rod-shaped, motile and facultatively anaerobic bacterial strain, designated X2, was isolated from the sludge of an anaerobic, denitrifying, sulfide-removal bioreactor, and found to oxidize sulfide anaerobically with nitrate as electron acceptor. The strain grew at salinities of 0–3 % (w/v) NaCl (optimum, 0–1 %). Growth occurred at pH 6.0–10.0 (optimum, pH 8.0) and 10–37 °C (optimum, 30 °C). The genomic DNA G+C content was 59 mol%. Q-8 and Q-9 were detected as the respiratory quinones. The major fatty acids (>10 %) were Cω7 and/or Cω6, Cω7 and C. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and one unidentified phospholipid. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain X2 formed a novel clade within the family , with the highest sequence similarity to KCTC 22292 (93.5 %). On the basis of phenotypic, chemotaxonomic and phylogenetic characteristics, it is proposed that this strain represents novel genus and species within the family , for which the name gen. nov., sp. nov. is proposed. The type strain is X2 ( = CCTCC M 2013362 = DSM 28679 = KCTC 42076).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.064634-0
2015-01-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/1/225.html?itemId=/content/journal/ijsem/10.1099/ijs.0.064634-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Anzai Y., Kudo Y., Oyaizu H.. ( 1997;). The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. . Int J Syst Bacteriol 47:, 249–251. [CrossRef][PubMed]
    [Google Scholar]
  3. Austin D. A., Moss M. O.. ( 1986;). Numerical taxonomy of red-pigmented bacteria isolated from a lowland river, with the description of a new taxon, Rugamonas rubra gen. nov., sp. nov.. J Gen Microbiol 132:, 1899–1909.
    [Google Scholar]
  4. Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. ( 2005;). Bergey’s Mannual of Systematic Bacteriololgy, 2nd edn, vol. 2, Part B. ( The Proteobacteria). New York:: Springer;.
    [Google Scholar]
  5. Cerny G.. ( 1978;). Studies on aminopeptidase for the distinction of Gram-negative from Gram-positive bacteria. . Eur J Appl Microbiol Biotechnol 5:, 113–122. [CrossRef]
    [Google Scholar]
  6. Collins M. D., Jones D.. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycan based on 2,4-diaminobutyric acid. . Appl Bacteriol 48:, 459–470. [CrossRef]
    [Google Scholar]
  7. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  10. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  11. Goto M., Kuwata H.. ( 1988;). Rhizobacter daucus gen. nov., sp. nov., the causal agent of carrot bacterial gall. . Int J Syst Bacteriol 38:, 233–239. [CrossRef]
    [Google Scholar]
  12. Holmes B., Steigerwalt A. G., Weaver R. E., Brenner D. J.. ( 1987;). Chryseomonas luteola, comb. nov. and Flavimonas oryzihabitans, gen. nov., comb. nov., Pseudomonas-like species from human clinical specimens and formerly known, respectively, as groups Ve-1 and Ve-2. . Int J Syst Bacteriol 37:, 245–250. [CrossRef]
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  14. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  15. King E. O., Ward M. K., Raney D. E.. ( 1954;). Two simple media for the demonstration of pyocyanin and fluorescin. . J Lab Clin Med 44:, 301–307.[PubMed]
    [Google Scholar]
  16. Kroppenstedt R. M.. ( 1982;). Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. . J Liq Chromatogr 5:, 2359–2367. [CrossRef]
    [Google Scholar]
  17. Li W. J., Xu P., Schumann P., Zhang Y. Q., Pukall R., Xu L. H., Stackebrandt E., Jiang C. L.. ( 2007;). Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. . Int J Syst Evol Microbiol 57:, 1424–1428. [CrossRef][PubMed]
    [Google Scholar]
  18. Migula W.. ( 1894;). Über ein neues System der Bakterien. . Arb Bakteriol Inst Karlsruhe 1:, 235–238 (in German).
    [Google Scholar]
  19. Minnikin D. E., Collins M. D., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47:, 87–95. [CrossRef]
    [Google Scholar]
  20. Oyaizu H., Komagata K.. ( 1983;). Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. . J Gen Appl Microbiol 29:, 17–40. [CrossRef]
    [Google Scholar]
  21. Parte A. C.. ( 2014;). LPSN–list of prokaryotic names with standing in nomenclature. . Nucleic Acids Res 42: (D1), D613–D616. [CrossRef][PubMed]
    [Google Scholar]
  22. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  24. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L.. ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. . Int J Syst Evol Microbiol 55:, 1149–1153. [CrossRef][PubMed]
    [Google Scholar]
  25. Young J. M., Park D. C.. ( 2007;). Probable synonymy of the nitrogen-fixing genus Azotobacter and the genus Pseudomonas. . Int J Syst Evol Microbiol 57:, 2894–2901. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.064634-0
Loading
/content/journal/ijsem/10.1099/ijs.0.064634-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error