1887

Abstract

A Gram-positive-staining, aerobic, endospore-forming bacterium, strain P-207, was isolated from a rhizosphere soil sample in Auburn, AL, USA. On the basis of 16S rRNA gene sequence comparisons, strain P-207 was grouped in the vicinity of representatives of the genera , , , and , but could not be assigned clearly to any of these genera. The highest similarity was found to the sequence of LMG 20964 (94.4 %); however, the 16S rRNA gene sequence similarity to the type strain of the type species of , , was only 92.9 %. The quinone system of strain P-207 consisted predominantly of menaquinone MK-7. The polar lipid profile exhibited the major lipids diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine and moderate to minor amounts of several unidentified phospholipids, glycolipids and phosphoglycolipids, an aminophospholipid and an aminolipid. The diagnostic diamino acid of the peptidoglycan was -diaminopimelic acid and the polyamine pattern contained predominantly spermidine and spermine. The major fatty acids were anteiso-C, anteiso-C, iso-C and iso-C. The G+C content of the genomic DNA was 34 mol%. Because of the low sequence similarity of strain P-207 to all representatives of , , , and , which was always <95 %, and its unique lipid pattern, we propose that strain P-207 represents a novel species in a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is P-207 ( = CCM 8509 = LMG 28212 = CIP 110797).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.064584-0
2014-07-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/7/2442.html?itemId=/content/journal/ijsem/10.1099/ijs.0.064584-0&mimeType=html&fmt=ahah

References

  1. Aino K., Hirota K., Matsuno T., Morita N., Nodasaka Y., Fujiwara T., Matsuyama H., Yoshimune K., Yumoto I.. ( 2008;). Bacillus polygoni sp. nov., a moderately halophilic, non-motile obligate alkaliphile isolated from indigo balls. . Int J Syst Evol Microbiol 58:, 120–124. [CrossRef][PubMed]
    [Google Scholar]
  2. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J.. ( 1996;). Classification of bacteria isolated from a medieval wall painting. . J Biotechnol 47:, 39–52. [CrossRef]
    [Google Scholar]
  3. Altenburger P., Kämpfer P., Akimov V. N., Lubitz W., Busse H.-J.. ( 1997;). Polyamine distribution in actinomycetes with group B peptidoglycan and species of the genera Brevibacterium, Corynebacterium and Tsukamurella. . Int J Syst Bacteriol 47:, 270–277. [CrossRef]
    [Google Scholar]
  4. Arahal D. R., Ventosa A.. ( 2002;). Moderately halophilic and halotolerant species of Bacillus and related genera. . In Applications and Systematics of Bacillus and Relatives, pp. 83–99. Edited by Berkeley R. C. W., Heyndrickx M., Logan N., De Vos P... Oxford:: Blackwell;. [CrossRef]
    [Google Scholar]
  5. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D.. ( 1991;). Phylogenetic heterogeneity of the genus Bacillus as revealed by comparative analysis of small-subunit ribosomal-RNA sequences. . Lett Appl Microbiol 13:, 202–206. [CrossRef]
    [Google Scholar]
  6. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci U S A 75:, 4801–4805. [CrossRef][PubMed]
    [Google Scholar]
  7. Busse H.-J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  8. Carrasco I. J., Márquez M. C., Xue Y., Ma Y., Cowan D. A., Jones B. E., Grant W. D., Ventosa A.. ( 2007;). Bacillus chagannorensis sp. nov., a moderate halophile from a soda lake in Inner Mongolia, China. . Int J Syst Evol Microbiol 57:, 2084–2088. [CrossRef][PubMed]
    [Google Scholar]
  9. Chen Y. G., Cui X. L., Zhang Y. Q., Li W. J., Wang Y. X., Xu L. H., Wen M. L., Peng Q., Jiang C. L.. ( 2009a;). Paraliobacillus quinghaiensis sp. nov., isolated from salt-lake sediment in China. . Int J Syst Evol Microbiol 59:, 28–33. [CrossRef][PubMed]
    [Google Scholar]
  10. Chen Y.-G., Zhang Y.-Q., Wang Y.-X., Liu Z.-X., Klenk H.-P., Xiao H.-D., Tang S.-K., Cui X.-L., Li W. J.. ( 2009b;). Bacillus neizhouensis sp. nov., a halophilic marine bacterium isolated from a sea anemone. . Int J Syst Evol Microbiol 59:, 3035–3039. [CrossRef][PubMed]
    [Google Scholar]
  11. Chen Y.-G., Zhang L., Zhang Y.-Q., He J.-W., Klenk H.-P., Tang S.-K., Zhang Y.-X., Li W.-J.. ( 2011;). Bacillus nanhaiensis sp. nov., isolated from an oyster. . Int J Syst Evol Microbiol 61:, 888–893. [CrossRef][PubMed]
    [Google Scholar]
  12. Christensen W. B.. ( 1946;). Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. . J Bacteriol 52:, 461–466.[PubMed]
    [Google Scholar]
  13. Claus D., Berkeley R. C. W.. ( 1986;). Genus Bacillus Cohn 1872. . In Bergey’s Manual of Systematic Bacteriology, vol. 2, pp. 1105–1140. Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  14. Felsenstein J.. ( 1985;). Confidence limits of phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  15. Felsenstein J.. ( 2005;). phylip (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA. .
    [Google Scholar]
  16. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  17. Glaeser S. P., Falsen E., Martin K., Kämpfer P.. ( 2013;). Alicyclobacillus consociatus sp. nov., isolated from a human clinical specimen. . Int J Syst Evol Microbiol 63:, 3623–3627. [CrossRef][PubMed]
    [Google Scholar]
  18. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef][PubMed]
    [Google Scholar]
  19. Hamana K., Akiba T., Uchino F., Matsuzaki S.. ( 1989;). Distribution of spermine in bacilli and lactic acid bacteria. . Can J Microbiol 35:, 450–455. [CrossRef][PubMed]
    [Google Scholar]
  20. Heyrman J., Logan N. A., Busse H.-J., Balcaen A., Lebbe L., Rodriguez-Diaz M., Swings J., De Vos P.. ( 2003;). Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three novel species isolated from deteriorated mural paintings, transfer of the species of the genus Salibacillus to Virgibacillus, as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens comb. nov., and emended description of the genus Virgibacillus. . Int J Syst Evol Microbiol 53:, 501–511. [CrossRef][PubMed]
    [Google Scholar]
  21. Ishikawa M., Ishizaki S., Yamamoto Y., Yamasato K.. ( 2002;). Paraliobacillus ryukyuensis gen. nov., sp. nov., a new Gram-positive, slightly halophilic, extremely halotolerant, facultative anaerobe isolated from a decomposing marine alga. . J Gen Appl Microbiol 48:, 269–279. [CrossRef][PubMed]
    [Google Scholar]
  22. Jeon C. O., Lim J. M., Lee J. C., Lee G. S., Lee J. M., Xu L. H., Jiang C. L., Kim C. J.. ( 2005;). Lentibacillus salarius sp. nov., isolated from saline sediment in China, and emended description of the genus Lentibacillus. . Int J Syst Evol Microbiol 55:, 1339–1343. [CrossRef][PubMed]
    [Google Scholar]
  23. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;. [CrossRef]
    [Google Scholar]
  24. Jung M. J., Roh S. W., Kim M. S., Bae J. W.. ( 2010;). Lentibacillus jeotgali sp. nov., a halophilic bacterium isolated from traditional Korean fermented seafood. . Int J Syst Evol Microbiol 60:, 1017–1022. [CrossRef][PubMed]
    [Google Scholar]
  25. Kämpfer P.. ( 1990;). Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae. . Zentralbl Bakteriol 273:, 164–172. [CrossRef][PubMed]
    [Google Scholar]
  26. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  27. Kämpfer P., Steiof M., Dott W.. ( 1991;). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef][PubMed]
    [Google Scholar]
  28. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H.-J., Tindall B. J.. ( 2006;). Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov.. Int J Syst Evol Microbiol 56:, 781–786. [CrossRef][PubMed]
    [Google Scholar]
  29. Kämpfer P., Glaeser S. P., McInroy J. A., Busse H. J.. ( 2014a;). Cohnella rhizosphaerae sp. nov. isolated from the rhizosphere environment of Zea mays. . Int J Syst Evol Microbiol 64:, 1811–1816. [CrossRef][PubMed]
    [Google Scholar]
  30. Kämpfer P., McInroy J. A., Glaeser S. P.. ( 2014b;). Chryseobacterium zeae sp. nov., Chryseobacterium arachidis sp. nov., and Chryseobacterium geocarposphaerae sp. nov. isolated from the rhizosphere environment. . Antonie van Leeuwenhoek 105:, 491–500. [CrossRef][PubMed]
    [Google Scholar]
  31. Lim J. M., Jeon C. O., Lee J. C., Ju Y. J., Park D. J., Kim C. J.. ( 2006a;). Bacillus koreensis sp. nov., a spore-forming bacterium, isolated from the rhizosphere of willow roots in Korea. . Int J Syst Evol Microbiol 56:, 59–63. [CrossRef][PubMed]
    [Google Scholar]
  32. Lim J.-M., Jeon C. O., Lee S.-M., Lee J. C., Xu L. H., Jiang C. L., Kim C. J.. ( 2006b;). Bacillus salarius sp. nov., a halophilic, spore-forming bacterium isolated from a salt lake in China. . Int J Syst Evol Microbiol 56:, 373–377. [CrossRef][PubMed]
    [Google Scholar]
  33. Lim J.-M., Jeon C. O., Kim C.-J.. ( 2006c;). Bacillus taeanensis sp. nov., a halophilic Gram-positive bacterium from a solar saltern in Korea. . Int J Syst Evol Microbiol 56:, 2903–2908. [CrossRef][PubMed]
    [Google Scholar]
  34. Liu H., Zhou Y., Liu R., Zhang K.-Y., Lai R.. ( 2009;). Bacillus solisalsi sp. nov., a halotolerant, alkaliphilic bacterium isolated from soil around a salt lake. . Int J Syst Evol Microbiol 59:, 1460–1464. [CrossRef][PubMed]
    [Google Scholar]
  35. Lu J., Nogi Y., Takami H.. ( 2001;). Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. . FEMS Microbiol Lett 205:, 291–297. [CrossRef][PubMed]
    [Google Scholar]
  36. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  37. Madhaiyan M., Poonguzhali S., Kwon S. W., Sa T. M.. ( 2010;). Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. . Int J Syst Evol Microbiol 60:, 2490–2495. [CrossRef][PubMed]
    [Google Scholar]
  38. Madhaiyan M., Poonguzhali S., Lee J. S., Lee K. C., Hari K.. ( 2011;). Bacillus rhizosphaerae sp. nov., an novel diazotrophic bacterium isolated from sugarcane rhizosphere soil. . Antonie van Leeuwenhoek 100:, 437–444. [CrossRef][PubMed]
    [Google Scholar]
  39. Nakamura K., Haruta S., Ueno S., Ishii M., Yokota A., Igarashi Y.. ( 2004;). Cerasibacillus quisquiliarum gen. nov., sp. nov., isolated from a semi-continuous decomposing system of kitchen refuse. . Int J Syst Evol Microbiol 54:, 1063–1069. [CrossRef][PubMed]
    [Google Scholar]
  40. Nielsen P., Rainey F. A., Outtrup H., Priest F. G., Fritze D.. ( 1994;). Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus. . FEMS Microbiol Lett 117:, 61–65. [CrossRef]
    [Google Scholar]
  41. Olivera N., Siñeriz F., Breccia J. D.. ( 2005;). Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from the rhizosphere of Atriplex lampa in Patagonia, Argentina. . Int J Syst Evol Microbiol 55:, 443–447. [CrossRef][PubMed]
    [Google Scholar]
  42. Pitcher D. G., Saunders N. A., Owen R. J.. ( 1989;). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. . Lett Appl Microbiol 8:, 151–156. [CrossRef]
    [Google Scholar]
  43. Pruesse E., Peplies J., Glöckner F. O.. ( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28:, 1823–1829. [CrossRef][PubMed]
    [Google Scholar]
  44. Romano I., Lama L., Nicolaus B., Gambacorta A., Giordano A.. ( 2005;). Bacillus saliphilus sp. nov., isolated from a mineral pool in Campania, Italy. . Int J Syst Evol Microbiol 55:, 159–163. [CrossRef][PubMed]
    [Google Scholar]
  45. Schleifer K. H.. ( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  46. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22:, 2688–2690. [CrossRef][PubMed]
    [Google Scholar]
  47. Stolz A., Busse H.-J., Kämpfer P.. ( 2007;). Pseudomonas knackmussii sp. nov.. Int J Syst Evol Microbiol 57:, 572–576. [CrossRef][PubMed]
    [Google Scholar]
  48. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  49. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  50. Ventosa A., Nieto J. J., Oren A.. ( 1998;). Biology of moderately halophilic aerobic bacteria. . Microbiol Mol Biol Rev 62:, 504–544.[PubMed]
    [Google Scholar]
  51. Wainø M., Tindall B. J., Schumann P., Ingvorsen K.. ( 1999;). Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov.. Int J Syst Bacteriol 49:, 821–831. [CrossRef][PubMed]
    [Google Scholar]
  52. Yarza P., Richter M., Peplies J., Euzéby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31:, 241–250. [CrossRef][PubMed]
    [Google Scholar]
  53. Yoon J. H., Oh T. K., Park Y. H.. ( 2004;). Transfer of Bacillus halodenitrificans Denariaz et al. 1989 to the genus Virgibacillus as Virgibacillus halodenitrificans comb. nov.. Int J Syst Evol Microbiol 54:, 2163–2167. [CrossRef][PubMed]
    [Google Scholar]
  54. Yumoto I.. ( 2007;). Environmental and taxonomic biodiversities of Gram-positive alkaliphiles. . In Physiology and Biochemistry of Extremophiles, pp. 295–310. Edited by Gerday C., Glansdorff N... Washington, DC:: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.064584-0
Loading
/content/journal/ijsem/10.1099/ijs.0.064584-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error