1887

Abstract

A light-pink-pigmented, microaerophilic bacterium was obtained from a methanotrophic consortium enriched from acidic peat and designated strain Pf56. Cells of this bacterium were Gram-negative, non-motile, thick curved rods that contained a vesicular intracytoplasmic membrane system characteristic of some purple non-sulfur alphaproteobacteria. The absorption spectrum of acetone/methanol extracts of cells grown in the light showed maxima at 363, 475, 505, 601 and 770 nm; the peaks at 363 and 770 nm are characteristic of bacteriochlorophyll . However, in contrast to purple non-sulfur bacteria, strain Pf56 was unable to grow phototrophically under anoxic conditions in the light. Best growth occurred on some sugars and organic acids under micro-oxic conditions by means of fermentation. The fermentation products were propionate, acetate and hydrogen. Slow chemo-organotrophic growth was also observed under fully oxic conditions. Light stimulated growth. C substrates were not utilized. Strain Pf56 grew at pH 4.0–7.0 (optimum pH 5.5–6.5) and at 15–30 °C (optimum 22–28 °C). The major cellular fatty acids were 19 : 0 cyclo ω8 and 18 : 1ω7; quinones were represented by ubiquinone Q-10. The G+C content of the DNA was 70.0 mol%. Strain Pf56 displays 93.6–94.7 and 92.7–93.7 % 16S rRNA gene sequence similarity to members of the families and , respectively, and belongs to a large cluster of environmental sequences retrieved from various wetlands and forest soils in cultivation-independent studies. Phenotypic, genotypic and chemotaxonomic characteristics of strain Pf56 suggest that it represents a novel genus and species of bacteriochlorophyll -containing fermentative bacteria, for which the name gen. nov., sp. nov. is proposed. Strain Pf56 ( = DSM 24875 = VKM B-2876) is the type strain of , and is also the first characterized member of a novel family within the class , fam. nov.

Funding
This study was supported by the:
  • Program ‘Molecular and Cell Biology’
  • Russian Fund of Basic Research (Award 12-04-00768)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.064576-0
2014-08-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/8/2558.html?itemId=/content/journal/ijsem/10.1099/ijs.0.064576-0&mimeType=html&fmt=ahah

References

  1. Auman A. J., Stolyar S., Costello A. M., Lidstrom M. E. ( 2000 ). Molecular characterization of methanotrophic isolates from freshwater lake sediment. . Appl Environ Microbiol 66, 52595266. [View Article] [PubMed]
    [Google Scholar]
  2. Belova S. E., Kulichevskaya I. S., Bodelier P. L. E., Dedysh S. N. ( 2013 ). Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993. . Int J Syst Evol Microbiol 63, 10961104. [View Article] [PubMed]
    [Google Scholar]
  3. Benning C., Huang Z. H., Gage D. A. ( 1995 ). Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation. . Arch Biochem Biophys 317, 103111. [View Article] [PubMed]
    [Google Scholar]
  4. Bodelier P. L. E., Bär Gillisen M.-J., Hordijk K., Sinninghe Damsté J., Rijpstra W. I. C., Geenevasen J. A. J., Dunfield P. F. ( 2009 ). A reanalysis of phospholipid fatty acids as ecological biomarkers for methanotrophic bacteria. . ISME J 3, 606617. [View Article] [PubMed]
    [Google Scholar]
  5. Bowman J. ( 2006 ). The methanotrophs – the families Methylococcaceae and Methylocystaceae . . In The Prokaryotes: a Handbook on the Biology of Bacteria, , 3rd edn., vol. 5, pp. 266289. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. . New York:: Springer;.
    [Google Scholar]
  6. Collins M. D. ( 1985 ). Analysis of isoprenoid quinones. . Methods Microbiol 18, 329366. [View Article]
    [Google Scholar]
  7. Costello A. M., Lidstrom M. E. ( 1999 ). Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. . Appl Environ Microbiol 65, 50665074.[PubMed]
    [Google Scholar]
  8. Dedysh S. N., Liesack W., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D., Bares A. M., Panikov N. S., Tiedje J. M. ( 2000 ). Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. . Int J Syst Evol Microbiol 50, 955969. [View Article] [PubMed]
    [Google Scholar]
  9. Dedysh S. N., Berestovskaya Y. Y., Vasylieva L. V., Belova S. E., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Liesack W., Zavarzin G. A. ( 2004a ). Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. . Int J Syst Evol Microbiol 54, 151156. [View Article] [PubMed]
    [Google Scholar]
  10. Dedysh S. N., Ricke P., Liesack W. ( 2004b ). NifH and NifD phylogenies: an evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. . Microbiology 150, 13011313. [View Article] [PubMed]
    [Google Scholar]
  11. Eller G., Stubner S., Frenzel P. ( 2001 ). Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridisation. . FEMS Microbiol Lett 198, 9197. [View Article] [PubMed]
    [Google Scholar]
  12. Felsenstein J. ( 1989 ). phylip – phylogeny inference package (version 3.2). . Cladistics 5, 164166.
    [Google Scholar]
  13. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. (editors) ( 1981 ). Manual of Methods for General Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  14. Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C. ( 1995 ). Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. . FEMS Microbiol Lett 132, 203208. [View Article] [PubMed]
    [Google Scholar]
  15. Imhoff J. F. ( 1995 ). Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. . In Anoxygenic Photosynthetic Bacteria, pp. 115. Edited by Blankenship R. E., Madigan M. T., Bauer C. E. . Dordrecht:: Kluwer Academic;.
    [Google Scholar]
  16. Imhoff J. F. ( 2006 ). The phototrophic alphaproteobacteria. . In The Prokaryotes: a Handbook on the Biology of Bacteria, , 3rd edn., vol. 5, pp. 4164. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. . New York:: Springer;. [View Article]
    [Google Scholar]
  17. Imhoff J. F., Kushner D. J., Kushwaha S. C., Kates M. ( 1982 ). Polar lipids in phototrophic bacteria of the Rhodospirillaceae and Chromatiaceae families. . J Bacteriol 150, 11921201.[PubMed]
    [Google Scholar]
  18. Kämpfer P., Kroppenstedt R. M. ( 1996 ). Numerical analysis of fatty acid patterns of the coryneform bacteria and related taxa. . Can J Microbiol 42, 9891005. [View Article]
    [Google Scholar]
  19. Kates M. ( 1972 ). Techniques of Lipidology. New York:: Elsevier;.
    [Google Scholar]
  20. Kulichevskaya I. S., Guzev V. S., Gorlenko V. M., Liesack W., Dedysh S. N. ( 2006 ). Rhodoblastus sphagnicola sp. nov., a novel acidophilic purple non-sulfur bacterium from Sphagnum peat bog. . Int J Syst Evol Microbiol 56, 13971402. [View Article] [PubMed]
    [Google Scholar]
  21. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. & other authors ( 2004 ). arb: a software environment for sequence data. . Nucleic Acids Res 32, 13631371. [View Article] [PubMed]
    [Google Scholar]
  22. Madigan M. T., Cox J. C., Gest H. ( 1980 ). Physiology of dark fermentative growth of Rhodopseudomonas capsulata . . J Bacteriol 142, 908915.[PubMed]
    [Google Scholar]
  23. McDonald I. R., Kenna E. M., Murrell J. C. ( 1995 ). Detection of methanotrophic bacteria in environmental samples with the PCR. . Appl Environ Microbiol 61, 116121.[PubMed]
    [Google Scholar]
  24. Miguez C. B., Bourque D., Sealy J. A., Greer C. W., Groleau D. ( 1997 ). Detection and isolation of methanotrophic bacteria possessing soluble methane monooxygenase (sMMO) genes using the polymerase chain reaction (PCR). . Microb Ecol 33, 2131. [View Article] [PubMed]
    [Google Scholar]
  25. Nichols B. W. ( 1963 ). Separation of the lipids of photosynthetic tissues: improvements in analysis by thin-layer chromatography. . Biochim Biophys Acta 70, 417422. [View Article] [PubMed]
    [Google Scholar]
  26. Owen R. J., Hill L. R., Lapage S. P. ( 1969 ). Determination of DNA base compositions from melting profiles in dilute buffers. . Biopolymers 7, 503516. [View Article] [PubMed]
    [Google Scholar]
  27. Schultz J. E., Weaver P. F. ( 1982 ). Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata . . J Bacteriol 149, 181190.[PubMed]
    [Google Scholar]
  28. Shigematsu T., Hanada S., Eguchi M., Kamagata Y., Kanagawa T., Kurane R. ( 1999 ). Soluble methane monooxygenase gene clusters from trichloroethylene-degrading Methylomonas sp. strains and detection of methanotrophs during in situ bioremediation. . Appl Environ Microbiol 65, 51985206.[PubMed]
    [Google Scholar]
  29. Swingley W. D., Blankenship R. E., Raymond J. ( 2009 ). Evolutionary relationships among purple photosynthetic bacteria and the origin of proteobacterial photosynthetic systems. . In The Purple Phototrophic Bacteria, pp. 1729. Edited by Hunter C. N., Thurnauer M. C., Beatty J. T. . Berlin:: Springer Science + Business Media;. [View Article]
    [Google Scholar]
  30. Tamas I., Smirnova A. V., He Z., Dunfield P. F. ( 2014 ). The (d)evolution of methanotrophy in the Beijerinckiaceae – a comparative genomics analysis. . ISME J 8, 369382. [View Article] [PubMed]
    [Google Scholar]
  31. Uffen R. L., Wolfe R. S. ( 1970 ). Anaerobic growth of purple nonsulfur bacteria under dark conditions. . J Bacteriol 104, 462472.[PubMed]
    [Google Scholar]
  32. Vorobev A. V., Baani M., Doronina N. V., Brady A. L., Liesack W., Dunfield P. F., Dedysh S. N. ( 2011 ). Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. . Int J Syst Evol Microbiol 61, 24562463. [View Article] [PubMed]
    [Google Scholar]
  33. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. ( 1991 ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173, 697703.[PubMed]
    [Google Scholar]
  34. Yurkov V. V. ( 2006 ). Aerobic phototrophic proteobacteria. . In The Prokaryotes: a Handbook on the Biology of Bacteria, , 3rd edn., vol. 5, pp. 562584. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. . New York:: Springer;.
    [Google Scholar]
  35. Yurkov V. V., Beatty J. T. ( 1998 ). Aerobic anoxygenic phototrophic bacteria. . Microbiol Mol Biol Rev 62, 695724.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.064576-0
Loading
/content/journal/ijsem/10.1099/ijs.0.064576-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error