1887

Abstract

A light-pink-pigmented, microaerophilic bacterium was obtained from a methanotrophic consortium enriched from acidic peat and designated strain Pf56. Cells of this bacterium were Gram-negative, non-motile, thick curved rods that contained a vesicular intracytoplasmic membrane system characteristic of some purple non-sulfur alphaproteobacteria. The absorption spectrum of acetone/methanol extracts of cells grown in the light showed maxima at 363, 475, 505, 601 and 770 nm; the peaks at 363 and 770 nm are characteristic of bacteriochlorophyll . However, in contrast to purple non-sulfur bacteria, strain Pf56 was unable to grow phototrophically under anoxic conditions in the light. Best growth occurred on some sugars and organic acids under micro-oxic conditions by means of fermentation. The fermentation products were propionate, acetate and hydrogen. Slow chemo-organotrophic growth was also observed under fully oxic conditions. Light stimulated growth. C substrates were not utilized. Strain Pf56 grew at pH 4.0–7.0 (optimum pH 5.5–6.5) and at 15–30 °C (optimum 22–28 °C). The major cellular fatty acids were 19 : 0 cyclo ω8 and 18 : 1ω7; quinones were represented by ubiquinone Q-10. The G+C content of the DNA was 70.0 mol%. Strain Pf56 displays 93.6–94.7 and 92.7–93.7 % 16S rRNA gene sequence similarity to members of the families and , respectively, and belongs to a large cluster of environmental sequences retrieved from various wetlands and forest soils in cultivation-independent studies. Phenotypic, genotypic and chemotaxonomic characteristics of strain Pf56 suggest that it represents a novel genus and species of bacteriochlorophyll -containing fermentative bacteria, for which the name gen. nov., sp. nov. is proposed. Strain Pf56 ( = DSM 24875 = VKM B-2876) is the type strain of , and is also the first characterized member of a novel family within the class , fam. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.064576-0
2014-08-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/8/2558.html?itemId=/content/journal/ijsem/10.1099/ijs.0.064576-0&mimeType=html&fmt=ahah

References

  1. Auman A. J., Stolyar S., Costello A. M., Lidstrom M. E.. ( 2000;). Molecular characterization of methanotrophic isolates from freshwater lake sediment. . Appl Environ Microbiol 66:, 5259–5266. [CrossRef][PubMed]
    [Google Scholar]
  2. Belova S. E., Kulichevskaya I. S., Bodelier P. L. E., Dedysh S. N.. ( 2013;). Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993. . Int J Syst Evol Microbiol 63:, 1096–1104. [CrossRef][PubMed]
    [Google Scholar]
  3. Benning C., Huang Z. H., Gage D. A.. ( 1995;). Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation. . Arch Biochem Biophys 317:, 103–111. [CrossRef][PubMed]
    [Google Scholar]
  4. Bodelier P. L. E., Bär Gillisen M.-J., Hordijk K., Sinninghe Damsté J., Rijpstra W. I. C., Geenevasen J. A. J., Dunfield P. F.. ( 2009;). A reanalysis of phospholipid fatty acids as ecological biomarkers for methanotrophic bacteria. . ISME J 3:, 606–617. [CrossRef][PubMed]
    [Google Scholar]
  5. Bowman J.. ( 2006;). The methanotrophs – the families Methylococcaceae and Methylocystaceae. . In The Prokaryotes: a Handbook on the Biology of Bacteria, , 3rd edn., vol. 5, pp. 266–289. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York:: Springer;.
    [Google Scholar]
  6. Collins M. D.. ( 1985;). Analysis of isoprenoid quinones. . Methods Microbiol 18:, 329–366. [CrossRef]
    [Google Scholar]
  7. Costello A. M., Lidstrom M. E.. ( 1999;). Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. . Appl Environ Microbiol 65:, 5066–5074.[PubMed]
    [Google Scholar]
  8. Dedysh S. N., Liesack W., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D., Bares A. M., Panikov N. S., Tiedje J. M.. ( 2000;). Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. . Int J Syst Evol Microbiol 50:, 955–969. [CrossRef][PubMed]
    [Google Scholar]
  9. Dedysh S. N., Berestovskaya Y. Y., Vasylieva L. V., Belova S. E., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Liesack W., Zavarzin G. A.. ( 2004a;). Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. . Int J Syst Evol Microbiol 54:, 151–156. [CrossRef][PubMed]
    [Google Scholar]
  10. Dedysh S. N., Ricke P., Liesack W.. ( 2004b;). NifH and NifD phylogenies: an evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. . Microbiology 150:, 1301–1313. [CrossRef][PubMed]
    [Google Scholar]
  11. Eller G., Stubner S., Frenzel P.. ( 2001;). Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridisation. . FEMS Microbiol Lett 198:, 91–97. [CrossRef][PubMed]
    [Google Scholar]
  12. Felsenstein J.. ( 1989;). phylip – phylogeny inference package (version 3.2). . Cladistics 5:, 164–166.
    [Google Scholar]
  13. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.. (editors) ( 1981;). Manual of Methods for General Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  14. Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C.. ( 1995;). Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. . FEMS Microbiol Lett 132:, 203–208. [CrossRef][PubMed]
    [Google Scholar]
  15. Imhoff J. F.. ( 1995;). Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. . In Anoxygenic Photosynthetic Bacteria, pp. 1–15. Edited by Blankenship R. E., Madigan M. T., Bauer C. E... Dordrecht:: Kluwer Academic;.
    [Google Scholar]
  16. Imhoff J. F.. ( 2006;). The phototrophic alphaproteobacteria. . In The Prokaryotes: a Handbook on the Biology of Bacteria, , 3rd edn., vol. 5, pp. 41–64. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York:: Springer;. [CrossRef]
    [Google Scholar]
  17. Imhoff J. F., Kushner D. J., Kushwaha S. C., Kates M.. ( 1982;). Polar lipids in phototrophic bacteria of the Rhodospirillaceae and Chromatiaceae families. . J Bacteriol 150:, 1192–1201.[PubMed]
    [Google Scholar]
  18. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of the coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  19. Kates M.. ( 1972;). Techniques of Lipidology. New York:: Elsevier;.
    [Google Scholar]
  20. Kulichevskaya I. S., Guzev V. S., Gorlenko V. M., Liesack W., Dedysh S. N.. ( 2006;). Rhodoblastus sphagnicola sp. nov., a novel acidophilic purple non-sulfur bacterium from Sphagnum peat bog. . Int J Syst Evol Microbiol 56:, 1397–1402. [CrossRef][PubMed]
    [Google Scholar]
  21. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  22. Madigan M. T., Cox J. C., Gest H.. ( 1980;). Physiology of dark fermentative growth of Rhodopseudomonas capsulata. . J Bacteriol 142:, 908–915.[PubMed]
    [Google Scholar]
  23. McDonald I. R., Kenna E. M., Murrell J. C.. ( 1995;). Detection of methanotrophic bacteria in environmental samples with the PCR. . Appl Environ Microbiol 61:, 116–121.[PubMed]
    [Google Scholar]
  24. Miguez C. B., Bourque D., Sealy J. A., Greer C. W., Groleau D.. ( 1997;). Detection and isolation of methanotrophic bacteria possessing soluble methane monooxygenase (sMMO) genes using the polymerase chain reaction (PCR). . Microb Ecol 33:, 21–31. [CrossRef][PubMed]
    [Google Scholar]
  25. Nichols B. W.. ( 1963;). Separation of the lipids of photosynthetic tissues: improvements in analysis by thin-layer chromatography. . Biochim Biophys Acta 70:, 417–422. [CrossRef][PubMed]
    [Google Scholar]
  26. Owen R. J., Hill L. R., Lapage S. P.. ( 1969;). Determination of DNA base compositions from melting profiles in dilute buffers. . Biopolymers 7:, 503–516. [CrossRef][PubMed]
    [Google Scholar]
  27. Schultz J. E., Weaver P. F.. ( 1982;). Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata. . J Bacteriol 149:, 181–190.[PubMed]
    [Google Scholar]
  28. Shigematsu T., Hanada S., Eguchi M., Kamagata Y., Kanagawa T., Kurane R.. ( 1999;). Soluble methane monooxygenase gene clusters from trichloroethylene-degrading Methylomonas sp. strains and detection of methanotrophs during in situ bioremediation. . Appl Environ Microbiol 65:, 5198–5206.[PubMed]
    [Google Scholar]
  29. Swingley W. D., Blankenship R. E., Raymond J.. ( 2009;). Evolutionary relationships among purple photosynthetic bacteria and the origin of proteobacterial photosynthetic systems. . In The Purple Phototrophic Bacteria, pp. 17–29. Edited by Hunter C. N., Thurnauer M. C., Beatty J. T... Berlin:: Springer Science + Business Media;. [CrossRef]
    [Google Scholar]
  30. Tamas I., Smirnova A. V., He Z., Dunfield P. F.. ( 2014;). The (d)evolution of methanotrophy in the Beijerinckiaceae – a comparative genomics analysis. . ISME J 8:, 369–382. [CrossRef][PubMed]
    [Google Scholar]
  31. Uffen R. L., Wolfe R. S.. ( 1970;). Anaerobic growth of purple nonsulfur bacteria under dark conditions. . J Bacteriol 104:, 462–472.[PubMed]
    [Google Scholar]
  32. Vorobev A. V., Baani M., Doronina N. V., Brady A. L., Liesack W., Dunfield P. F., Dedysh S. N.. ( 2011;). Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. . Int J Syst Evol Microbiol 61:, 2456–2463. [CrossRef][PubMed]
    [Google Scholar]
  33. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  34. Yurkov V. V.. ( 2006;). Aerobic phototrophic proteobacteria. . In The Prokaryotes: a Handbook on the Biology of Bacteria, , 3rd edn., vol. 5, pp. 562–584. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York:: Springer;.
    [Google Scholar]
  35. Yurkov V. V., Beatty J. T.. ( 1998;). Aerobic anoxygenic phototrophic bacteria. . Microbiol Mol Biol Rev 62:, 695–724.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.064576-0
Loading
/content/journal/ijsem/10.1099/ijs.0.064576-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error