1887

Abstract

An investigation of the prevalence of in a variety of animals led to the identification of the strain CIT 045, in the faeces of captive lion-tailed macaques (). Originally, believed to be based on the colony morphology and positive urease test, analysis of 16S rRNA and gene sequences of this isolate revealed that the strain differs significantly from other species of the genus described to date. Species-specific primers for 16S rRNA and genes were designed and used to identify two additional strains isolated from faeces samples from other macaques. Nucleotide sequence analysis of the 16S rRNA and genes revealed ≤95 % and ≤82 % sequence similarity to recognized species of the genus respectively. All three isolates formed a distinct group within the genus based on their 16S rRNA and sequences and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) profiles. The unique species status was further supported by phenotypic characteristics of the isolates. All isolates were found to be oxidase-, catalase- and urease-positive, they grew well at 37 °C and 42 °C and produced HS on TSI (triple-sugar iron) and SIM (sulfide indole motility) media. The name sp. nov. is proposed for this novel species, with the strain CIT 045 as the type strain CIT 045 ( = LMG 27932, CCUG 64942).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.063867-0
2014-08-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/8/2878.html?itemId=/content/journal/ijsem/10.1099/ijs.0.063867-0&mimeType=html&fmt=ahah

References

  1. Bullman S., Corcoran D., O’Leary J., Lucey B., Byrne D., Sleator R. D.. ( 2011;). Campylobacter ureolyticus: an emerging gastrointestinal pathogen?. FEMS Immunol Med Microbiol 61:, 228–230. [CrossRef][PubMed]
    [Google Scholar]
  2. Debruyne L., Gevers D., Vandamme P.. ( 2008;). Taxonomy of the family Campylobacteraceae. . In Campylobacter, pp. 3–26. Edited by Nachamkin I., Szymanski C. M., Blaser M. J... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  3. Debruyne L., Broman T., Bergström S., Olsen B., On S. L., Vandamme P.. ( 2010;). Campylobacter volucris sp. nov., isolated from black-headed gulls (Larus ridibundus). . Int J Syst Evol Microbiol 60:, 1870–1875. [CrossRef][PubMed]
    [Google Scholar]
  4. Griekspoor P., Colles F. M., McCarthy N. D., Hansbro P. M., Ashhurst-Smith C., Olsen B., Hasselquist D., Maiden M. C., Waldenström J.. ( 2013;). Marked host specificity and lack of phylogeographic population structure of Campylobacter jejuni in wild birds. . Mol Ecol 22:, 1463–1472. [CrossRef][PubMed]
    [Google Scholar]
  5. Hill J. E., Paccagnella A., Law K., Melito P. L., Woodward D. L., Price L., Leung A. H., Ng L. K., Hemmingsen S. M., Goh S. H.. ( 2006;). Identification of Campylobacter spp. and discrimination from Helicobacter and Arcobacter spp. by direct sequencing of PCR-amplified cpn60 sequences and comparison to cpnDB, a chaperonin reference sequence database. . J Med Microbiol 55:, 393–399. [CrossRef][PubMed]
    [Google Scholar]
  6. Lawson A. J., On S. L., Logan J. M., Stanley J.. ( 2001;). Campylobacter hominis sp. nov., from the human gastrointestinal tract. . Int J Syst Evol Microbiol 51:, 651–660.[PubMed]
    [Google Scholar]
  7. Linton D., Owen R. J., Stanley J.. ( 1996;). Rapid identification by PCR of the genus Campylobacter and of five Campylobacter species enteropathogenic for man and animals. . Res Microbiol 147:, 707–718. [CrossRef][PubMed]
    [Google Scholar]
  8. Man S. M.. ( 2011;). The clinical importance of emerging Campylobacter species. . Nat Rev Gastroenterol Hepatol 8:, 669–685. [CrossRef][PubMed]
    [Google Scholar]
  9. Matsheka M. I., Lastovica A. J., Zappe H., Elisha B. G.. ( 2006;). The use of (GTG)5 oligonucleotide as an RAPD primer to type Campylobacter concisus. . Lett Appl Microbiol 42:, 600–605.[PubMed]
    [Google Scholar]
  10. O’Doherty A., Koziel M., De Barra L., Corcoran D., Bullman S., Lucey B., Sleator R. D.. ( 2014;). Development of nalidixic acid amphotericin B vancomycin (NAV) medium for the isolation of Campylobacter ureolyticus from the stools of patients presenting with acute gastroenteritis. . Br J Biomed Sci 71:, 6–12.[PubMed]
    [Google Scholar]
  11. On S. L.. ( 2013;). Isolation, identification and subtyping of Campylobacter: where to from here?. J Microbiol Methods 95:, 3–7. [CrossRef][PubMed]
    [Google Scholar]
  12. On S. L., Holmes B.. ( 1991;). Effect of inoculum size on the phenotypic characterization of Campylobacter species. . J Clin Microbiol 29:, 923–926.[PubMed]
    [Google Scholar]
  13. On S. L., Holmes B.. ( 1992;). Assessment of enzyme detection tests useful in identification of campylobacteria. . J Clin Microbiol 30:, 746–749.[PubMed]
    [Google Scholar]
  14. On S. L., Holmes B.. ( 1995;). Classification and identification of campylobacters, helicobacters and allied taxa by numerical analysis of phenotypic characters. . Syst Appl Microbiol 18:, 374–390. [CrossRef]
    [Google Scholar]
  15. On S. L., Holmes B., Sackin M. J.. ( 1996;). A probability matrix for the identification of campylobacters, helicobacters and allied taxa. . J Appl Bacteriol 81:, 425–432.[PubMed]
    [Google Scholar]
  16. On S. L., Atabay H. I., Corry J. E., Harrington C. S., Vandamme P.. ( 1998;). Emended description of Campylobacter sputorum and revision of its infrasubspecific (biovar) divisions, including C. sputorum biovar paraureolyticus, a urease-producing variant from cattle and humans. . Int J Syst Bacteriol 48:, 195–206. [CrossRef][PubMed]
    [Google Scholar]
  17. Sebald M., Veron M.. ( 1963;). [Base DNA content and classification of vibrios]. . Ann Inst Pasteur (Paris) 105:, 897–910. (in French)[PubMed]
    [Google Scholar]
  18. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  19. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  20. Ursing J. B., Lior H., Owen R. J.. ( 1994;). Proposal of minimal standards for describing new species of the family Campylobacteraceae. . Int J Syst Bacteriol 44:, 842–845. [CrossRef][PubMed]
    [Google Scholar]
  21. Vandamme P., Debruyne L., De Brandt E., Falsen E.. ( 2010;). Reclassification of Bacteroides ureolyticus as Campylobacter ureolyticus comb. nov., and emended description of the genus Campylobacter. . Int J Syst Evol Microbiol 60:, 2016–2022. [CrossRef][PubMed]
    [Google Scholar]
  22. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  23. Zanoni R. G., Debruyne L., Rossi M., Revez J., Vandamme P.. ( 2009;). Campylobacter cuniculorum sp. nov., from rabbits. . Int J Syst Evol Microbiol 59:, 1666–1671. [CrossRef][PubMed]
    [Google Scholar]
  24. Zerbino D. R., Birney E.. ( 2008;). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. . Genome Res 18:, 821–829. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.063867-0
Loading
/content/journal/ijsem/10.1099/ijs.0.063867-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error