1887

Abstract

Three novel moderately anaerobic, thermophilic, rod-shaped bacterial strains, KY38, KY46 and KA13, were isolated from shellfish collected on the Pacific coastline of Enoshima, Japan. Phylogenetic analysis of the 16S rRNA gene sequences indicated that these bacteria belong to the genus , sharing sequence similarities of 97.8 % (KY38), 96.4 % (KY46) and 93.3 % (KA13) with the type strain of , the only species of the genus with a validly published name. These isolates reduced nitrate and grew optimally at 55–60 °C. Strains KY38 and KA13 formed endospore-like structures in the terminal or subterminal part of their cells at low frequencies. Genomic DNA G+C contents were 68.8 (KY38), 67.2 (KY46) and 67.1 (KA13) mol%. The isolates all presented the predominant menaquinone MK-6, major fatty acids iso-C, C and iso-C and the major polar lipids phosphatidylglycerol, phosphatidylethanolamine and unknown glycol-containing phospholipids. On the basis of their morphological, physiological and phylogenetic properties, strains KY38, KY46 and KA13 represent three novel species, for which the names sp. nov. (type strain KY38 = DSM 27624 = KCTC 4567 = JCM 15048), sp. nov. (type strain KY46 = DSM 27625 = KCTC 4568 = JCM 15996) and sp. nov. (type strain KA13 = DSM 27138 = KCTC 4569 = JCM 15997) are proposed. An emended description of the genus is also presented. The phylogenetic distinctiveness of the genus indicates its affiliation with a novel family, for which the name fam. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.063750-0
2014-10-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/10/3375.html?itemId=/content/journal/ijsem/10.1099/ijs.0.063750-0&mimeType=html&fmt=ahah

References

  1. Beppu T., Ueda K.. ( 2009;). Genus I Symbiobacterium. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 3, pp. 1188–1190. Edited by De Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  2. Blazevic D. J.. ( 1968;). Improved motility-indole medium. . Appl Microbiol 16:, 668.[PubMed]
    [Google Scholar]
  3. De Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B.. (editors) ( 2009;). Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 3. New York:: Springer;.
    [Google Scholar]
  4. Fardeau M. L., Barsotti V., Cayol J. L., Guasco S., Michotey V., Joseph M., Bonin P., Ollivier B.. ( 2010;). Caldinitratiruptor microaerophilus, gen. nov., sp. nov. isolated from a French hot spring (Chaudes-Aigues, Massif Central): a novel cultivated facultative microaerophilic anaerobic thermophile pertaining to the Symbiobacterium branch within the Firmicutes. . Extremophiles 14:, 241–247. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  6. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  7. Hirahara T., Suzuki S., Horinouchi S., Beppu T.. ( 1992;). Cloning, nucleotide sequences, and overexpression in Escherichia coli of tandem copies of a tryptophanase gene in an obligately symbiotic thermophile, Symbiobacterium thermophilum. . Appl Environ Microbiol 58:, 2633–2642.[PubMed]
    [Google Scholar]
  8. Hirahara T., Horinouchi S., Beppu T.. ( 1993;). Cloning, nucleotide sequence, and overexpression in Escherichia coli of the β-tyrosinase gene from an obligately symbiotic thermophile, Symbiobacterium thermophilum. . Appl Microbiol Biotechnol 39:, 341–346. [CrossRef][PubMed]
    [Google Scholar]
  9. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H.. ( 1985;). Preparation of chromosomal, plasmid and phage DNA. . In Genetic Manipulation of Streptomyces: a Laboratory Manual, pp. 72–74. Norwich:: John Innes Foundation;.
    [Google Scholar]
  10. Jumas-Bilak E., Roudière L., Marchandin H.. ( 2009;). Description of ‘Synergistetes’ phyl. nov. and emended description of the phylum ‘Deferribacteres’ and of the family Syntrophomonadaceae, phylum ‘Firmicutes’. . Int J Syst Evol Microbiol 59:, 1028–1035. [CrossRef][PubMed]
    [Google Scholar]
  11. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  12. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  13. Ludwig W., Schleifer K. H., Whitman W. B.. ( 2009;). Revised road map to the phylum Firmicutes. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 3, pp. 1–13. Edited by De Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B... New York:: Springer;. [CrossRef]
    [Google Scholar]
  14. Nishida H., Beppu T., Ueda K.. ( 2009;). Symbiobacterium lost carbonic anhydrase in the course of evolution. . J Mol Evol 68:, 90–96. [CrossRef][PubMed]
    [Google Scholar]
  15. Nishijima M., Araki-Sakai M., Sano H.. ( 1997;). Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. . J Microbiol Methods 28:, 113–122. [CrossRef]
    [Google Scholar]
  16. Ohno M., Shiratori H., Park M.-J., Saitoh Y., Kumon Y., Yamashita N., Hirata A., Nishida H., Ueda K., Beppu T.. ( 2000;). Symbiobacterium thermophilum gen. nov., sp. nov., a symbiotic thermophile that depends on co-culture with a Bacillus strain for growth. . Int J Syst Evol Microbiol 50:, 1829–1832.[PubMed]
    [Google Scholar]
  17. Rhee S. K., Jeon C. O., Bae J. W., Kim K., Song J. J., Kim J. J., Lee S. G., Kim H. I., Hong S. P., Choi Y. H., Kim S. M., Sung M. H.. ( 2002;). Characterization of Symbiobacterium toebii, an obligate commensal thermophile isolated from compost. . Extremophiles 6:, 57–64. [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  19. Shiratori H., Ohiwa H., Ikeno H., Ayame S., Kataoka N., Miya A., Beppu T., Ueda K.. ( 2008;). Lutispora thermophila gen. nov., sp. nov., a thermophilic, spore-forming bacterium isolated from a thermophilic methanogenic bioreactor digesting municipal solid wastes. . Int J Syst Evol Microbiol 58:, 964–969. [CrossRef][PubMed]
    [Google Scholar]
  20. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  21. Sugihara T., Watsuji T. O., Kubota S., Yamada K., Oka K., Watanabe K., Meguro M., Sawada E., Yoshihara K.. & other authors ( 2008;). Distribution of Symbiobacterium thermophilum and related bacteria in the marine environment. . Biosci Biotechnol Biochem 72:, 204–211. [CrossRef][PubMed]
    [Google Scholar]
  22. Sung M. H., Bae J. W., Kim J. J., Kim K., Song J. J., Rhee S. K., Jeon C. O., Choi Y. H., Hong S. P.. & other authors ( 2003;). Symbiobacterium toebii sp. nov., a commensal thermophile isolated from Korean compost. . J Microbiol Biotechnol 13:, 1013–1017.
    [Google Scholar]
  23. Suzuki S., Horinouchi S., Beppu T.. ( 1988;). Growth of a tryptophanase-producing thermophile, Symbiobacterium thermophilum gen. nov., sp. nov., is dependent on co-culture with a Bacillus sp.. J Gen Microbiol 134:, 2353–2362.
    [Google Scholar]
  24. Suzuki S., Hirahara T., Horinouchi S., Beppu T.. ( 1991;). Purification and properties of thermostable tryptophanase from an obligately symbiotic thermophile, Symbiobacterium thermophilum. . Agric Biol Chem 55:, 3059–3066. [CrossRef][PubMed]
    [Google Scholar]
  25. Suzuki S., Hirahara T., Shim J.-K., Horinouchi S., Beppu T.. ( 1992;). Purification and properties of thermostable β-tyrosinase from an obligately symbiotic thermophile, Symbiobacterium thermophilum. . Biosci Biotechnol Biochem 56:, 84–89. [CrossRef]
    [Google Scholar]
  26. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  29. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R... Washington, DC:: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
  30. Toda T.. ( 1928;). Flagellar staining. . Nihon Ijishinpo 283:, 113 (in Japanese).
    [Google Scholar]
  31. Ueda K., Ohno M., Yamamoto K., Nara H., Mori Y., Shimada M., Hayashi M., Oida H., Terashima Y.. & other authors ( 2001;). Distribution and diversity of symbiotic thermophiles, Symbiobacterium thermophilum and related bacteria, in natural environments. . Appl Environ Microbiol 67:, 3779–3784. [CrossRef][PubMed]
    [Google Scholar]
  32. Ueda K., Yamashita A., Ishikawa J., Shimada M., Watsuji T.-O., Morimura K., Ikeda H., Hattori M., Beppu T.. ( 2004;). Genome sequence of Symbiobacterium thermophilum, an uncultivable bacterium that depends on microbial commensalism. . Nucleic Acids Res 32:, 4937–4944. [CrossRef][PubMed]
    [Google Scholar]
  33. Watsuji T.-O., Kato T., Ueda K., Beppu T.. ( 2006;). CO2 supply induces the growth of Symbiobacterium thermophilum, a syntrophic bacterium. . Biosci Biotechnol Biochem 70:, 753–756. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.063750-0
Loading
/content/journal/ijsem/10.1099/ijs.0.063750-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error