1887

Abstract

Strain KIS2-16 was isolated from a soil sample collected from Daecheong Island of Incheon region, South Korea. KIS2-16 was Gram-staining-positive, aerobic, non-spore-forming, non-motile, catalase-positive, oxidase-negative and mesophilic. On the basis of 16S rRNA gene sequence analysis, strain KIS2-16 represented a member of the genus , being most closely related to the type strains of species of the genus , RP-B30 (97.8 % sequence similarity) and RP-B26 (97.0 %). The fatty acid profile of KIS2-16 was dominated by Cω9, Cω8, C, C 10-methyl (TBSA), C 2-OH and C 2-OH. The major isoprenoid quinone was MK-8(H), and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol. The peptidoglycan structure was A3γ-type with -diaminopimelic acid. The genomic DNA G+C content of KIS2-16 was 64.9 mol%. Strain KIS2-16 showed DNA–DNA hybridization values of less than 70 % with the closely related species of the genus . Based on phenotypic, genotypic and phylogenetic data, the isolate represents a novel species of the genus , for which the name sp. nov. (type strain KIS2-16 = DSM 27136 = KACC 17297 = NBRC 109597) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.063610-0
2014-12-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/12/4109.html?itemId=/content/journal/ijsem/10.1099/ijs.0.063610-0&mimeType=html&fmt=ahah

References

  1. Busse H. J., Schumann P.. ( 1999;). Polyamine profiles within genera of the class Actinobacteria with ll-diaminopimelic acid in the peptidoglycan. . Int J Syst Bacteriol 49:, 179–184. [CrossRef][PubMed]
    [Google Scholar]
  2. Collins M. D., Goodfellow M., Minnikin D. E.. ( 1980;). Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. . J Gen Microbiol 118:, 29–37.[PubMed]
    [Google Scholar]
  3. Cui Y. S., Lee S.-T., Im W.-T.. ( 2009;). Nocardioides ginsengisoli sp. nov., isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 59:, 3045–3050. [CrossRef][PubMed]
    [Google Scholar]
  4. Du H.-J., Wei Y.-Z., Su J., Liu H.-Y., Ma B.-P., Guo B.-L., Zhang Y.-Q., Yu L.-Y.. ( 2013;). Nocardioides perillae sp. nov., isolated from surface-sterilized roots of Perilla frutescens. . Int J Syst Evol Microbiol 63:, 1068–1072. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  6. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef][PubMed]
    [Google Scholar]
  7. Hamada M., Tamura T., Yamamura H., Suzuki K., Hayakawa M.. ( 2012;). Lysinimicrobium mangrovi gen. nov., sp. nov., an actinobacterium isolated from the rhizosphere of a mangrove. . Int J Syst Evol Microbiol 62:, 1731–1735. [CrossRef][PubMed]
    [Google Scholar]
  8. Kim M. K., Srinivasan S., Park M.-J., Sathiyaraj G., Kim Y.-J., Yang D.-C.. ( 2009;). Nocardioides humi sp. nov., a β-glucosidase-producing bacterium isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 59:, 2724–2728. [CrossRef][PubMed]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  10. Kluge A. G., Farris J. S.. ( 1969;). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  11. Lee S. D., Lee D. W., Kim J. S.. ( 2008;). Nocardioides hwasunensis sp. nov.. Int J Syst Evol Microbiol 58:, 278–281. [CrossRef][PubMed]
    [Google Scholar]
  12. Lee D. W., Lee S.-Y., Yoon J.-H., Lee S. D.. ( 2011;). Nocardioides ultimimeridianus sp. nov. and Nocardioides maradonensis sp. nov., isolated from rhizosphere soil. . Int J Syst Evol Microbiol 61:, 1933–1937. [CrossRef][PubMed]
    [Google Scholar]
  13. Liu Q., Xin Y.-H., Liu H.-C., Zhou Y.-G., Wen Y.. ( 2013;). Nocardioides szechwanensis sp. nov. and Nocardioides psychrotolerans sp. nov., isolated from a glacier. . Int J Syst Evol Microbiol 63:, 129–133. [CrossRef][PubMed]
    [Google Scholar]
  14. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  15. O’Donnell A. G., Goodfellow M., Minnikin D. E.. ( 1982;). Lipids in the classification of Nocardioides: reclassification of Arthrobacter simplex (Jensen) Lochhead in the genus Nocardioides (Prauser) emend. O’Donnell et al. as Nocardioides simplex comb. nov.. Arch Microbiol 133:, 323–329. [CrossRef][PubMed]
    [Google Scholar]
  16. Prauser H.. ( 1976;). Nocardioides, a new genus of the order Actinomycetales. . Int J Syst Bacteriol 26:, 58–65. [CrossRef]
    [Google Scholar]
  17. Pruesse E., Peplies J., Glöckner F. O.. ( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28:, 1823–1829. [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  19. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 101. . Newark, DE:: MIDI Inc;.
  20. Seldin L., Dubnau D.. ( 1985;). Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. . Int J Syst Bacteriol 35:, 151–154. [CrossRef]
    [Google Scholar]
  21. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  22. Urzì C., Salamone P., Schumann P., Stackebrandt E.. ( 2000;). Marmoricola aurantiacus gen. nov., sp. nov., a coccoid member of the family Nocardioidaceae isolated from a marble statue. . Int J Syst Evol Microbiol 50:, 529–536. [CrossRef][PubMed]
    [Google Scholar]
  23. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  24. Yamamura H., Ohkubo S. Y., Nakagawa Y., Ishida Y., Hamada M., Otoguro M., Tamura T., Hayakawa M.. ( 2011;). Nocardioides iriomotensis sp. nov., an actinobacterium isolated from forest soil. . Int J Syst Evol Microbiol 61:, 2205–2209. [CrossRef][PubMed]
    [Google Scholar]
  25. Zhang J.-Y., Liu X.-Y., Liu S.-J.. ( 2009;). Nocardioides terrae sp. nov., isolated from forest soil. . Int J Syst Evol Microbiol 59:, 2444–2448. [CrossRef][PubMed]
    [Google Scholar]
  26. Zhang D. C., Schumann P., Redzic M., Zhou Y. G., Liu H. C., Schinner F., Margesin R.. ( 2012;). Nocardioides alpinus sp. nov., a psychrophilic actinomycete isolated from alpine glacier cryoconite. . Int J Syst Evol Microbiol 62:, 445–450. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.063610-0
Loading
/content/journal/ijsem/10.1099/ijs.0.063610-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error