1887

Abstract

Three bacterial strains belonging to the genus were isolated from the digestive tracts of laboratory-reared bumblebee queens () using MRS agar under anaerobic conditions. The isolates were identified according to 16S rRNA gene sequence analysis as undescribed members of the genus , with the highest 16S rRNA gene sequence similarity (96.9 %) to the uncharacterized bacterial strain sp. Mboho2r2 isolated from the stomach of a European honeybee (). was found to be the closest related species with a validly published name, with 92.9 % 16S rRNA gene sequence similarity to the type strain. However, phylogenetic analyses based on different markers revealed that this species is phylogenetically very distant from the novel strains. The DNA G+C content of the proposed type strain BTLCH M1/2 is 37.8 mol%. The fatty acids Cω6 and/or C cyclo ω10/19ω6, Cω9 and C were predominant in all strains. Diphosphatidylglycerol, phosphatidylglycerol, a phospholipid, seven glycolipids and two phosphoglycolipids were detected in the novel strains. Growth was observed at 47 °C. The peptidoglycan type A4α -Lys–-Asp was determined for strain BTLCH M1/2. Genotypic characteristics and phylogenetic analyses based on the phylogenetic markers , , and as well as phenotypic characteristics and the results of chemotaxonomic analyses confirmed that the new isolates belong to a novel species of the genus , for which the name sp. nov. is proposed. The type strain is BTLCH M1/2 ( = DSM 26517 = CCM 8440).

Funding
This study was supported by the:
  • , Technological Agency of the Czech Republic , (Award TA01020969)
  • , Internal Grant Agency of the Czech University of Life Sciences Prague , (Award 20132013 and 20132023)
  • , Czech National Agency for Agricultural Research , (Award NAZV QJ 1210047)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.063602-0
2014-08-01
2021-02-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/8/2611.html?itemId=/content/journal/ijsem/10.1099/ijs.0.063602-0&mimeType=html&fmt=ahah

References

  1. Arbogast L. Y., Henderson T. O. ( 1975 ). Effect of inhibition of protein synthesis on lipid metabolism in Lactobacillus plantarum . . J Bacteriol 123, 962971.[PubMed]
    [Google Scholar]
  2. Castresana J. ( 2000 ). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. . Mol Biol Evol 17, 540552. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chenoll E., Carmen Macián M., Aznar R. ( 2006 ). Lactobacillus tucceti sp. nov., a new lactic acid bacterium isolated from sausage. . Syst Appl Microbiol 29, 389395. [CrossRef] [PubMed]
    [Google Scholar]
  4. Colman D. R., Toolson E. C., Takacs-Vesbach C. D. ( 2012 ). Do diet and taxonomy influence insect gut bacterial communities?. Mol Ecol 21, 51245137. [CrossRef] [PubMed]
    [Google Scholar]
  5. Dobson C. M., Deneer H., Lee S., Hemmingsen S., Glaze S., Ziola B. ( 2002 ). Phylogenetic analysis of the genus Pediococcus, including Pediococcus claussenii sp. nov., a novel lactic acid bacterium isolated from beer. . Int J Syst Evol Microbiol 52, 20032010. [CrossRef] [PubMed]
    [Google Scholar]
  6. Ehrmann M. A., Müller M. R., Vogel R. F. ( 2003 ). Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov.. Int J Syst Evol Microbiol 53, 713. [CrossRef] [PubMed]
    [Google Scholar]
  7. Engel P., Martinson V. G., Moran N. A. ( 2012 ). Functional diversity within the simple gut microbiota of the honey bee. . Proc Natl Acad Sci U S A 109, 1100211007. [CrossRef] [PubMed]
    [Google Scholar]
  8. Evans J. D., Armstrong T. N. ( 2006 ). Antagonistic interactions between honey bee bacterial symbionts and implications for disease. . BMC Ecol 6, 4. [CrossRef] [PubMed]
    [Google Scholar]
  9. Forsgren E., Olofsson T., Vásquez A., Fries I. ( 2010 ). Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. . Apidologie (Celle) 41, 99108. [CrossRef]
    [Google Scholar]
  10. Goh S. H., Facklam R. R., Chang M., Hill J. E., Tyrrell G. J., Burns E. C., Chan D., He C., Rahim T. & other authors ( 2000 ). Identification of Enterococcus species and phenotypically similar Lactococcus and Vagococcus species by reverse checkerboard hybridization to chaperonin 60 gene sequences. . J Clin Microbiol 38, 39533959.[PubMed]
    [Google Scholar]
  11. Gomez Zavaglia A., Disalvo E. A., De Antoni G. L. ( 2000 ). Fatty acid composition and freeze-thaw resistance in lactobacilli. . J Dairy Res 67, 241247. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hammes W. P., Hertel Ch. ( 2009 ). Genus Lactobacillus . . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 3, pp. 465511. Edited by De Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B. . New York:: Springer;.
    [Google Scholar]
  13. Jeon Y. S., Chung H., Park S., Hur I., Lee J. H., Chun J. ( 2005 ). jPHYDIT: a java-based integrated environment for molecular phylogeny of ribosomal RNA sequences. . Bioinformatics 21, 31713173. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kämpfer P., Kroppenstedt R. M. ( 1996 ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42, 9891005. [CrossRef]
    [Google Scholar]
  15. Killer J., Kopecný J., Mrázek J., Rada V., Benada O., Koppová I., Havlík J., Straka J. ( 2009 ). Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. . Int J Syst Evol Microbiol 59, 20202024. [CrossRef] [PubMed]
    [Google Scholar]
  16. Killer J., Kopečný J., Mrázek J., Havlík J., Koppová I., Benada O., Rada V., Kofroňová O. ( 2010a ). Bombiscardovia coagulans gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of bumblebees. . Syst Appl Microbiol 33, 359366. [CrossRef] [PubMed]
    [Google Scholar]
  17. Killer J., Kopecný J., Mrázek J., Rada V., Dubná S., Marounek M. ( 2010b ). Bifidobacteria in the digestive tract of bumblebees. . Anaerobe 16, 165170. [CrossRef] [PubMed]
    [Google Scholar]
  18. Killer J., Kopečný J., Mrázek J., Koppová I., Havlík J., Benada O., Kott T. ( 2011 ). Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. . Int J Syst Evol Microbiol 61, 13151321. [CrossRef] [PubMed]
    [Google Scholar]
  19. Killer J., Mrázek J., Bunešová V., Havlík J., Koppová I., Benada O., Rada V., Kopečný J., Vlková E. ( 2013 ). Pseudoscardovia suis gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of wild pigs (Sus scrofa). . Syst Appl Microbiol 36, 1116. [CrossRef] [PubMed]
    [Google Scholar]
  20. Killer J., Dubná S., Sedláček I., Švec P. ( 2014a ). Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. . Int J Syst Evol Microbiol 64, 152157. [CrossRef] [PubMed]
    [Google Scholar]
  21. Killer J., Havlík J., Vlková E., Rada V., Pechar R., Benada O., Kopečny J., Kofroňova O., Sechovcová H. ( 2014b ). Lactobacillus rodentium sp. nov., from the digestive tract of wild rodents. . Int J Syst Evol Microbiol 64, 15261533. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kim H. J., Eom S. J., Park S. J., Cha C. J., Kim G. B. ( 2011 ). Lactobacillus alvi sp. nov., isolated from the intestinal tract of chicken. . FEMS Microbiol Lett 323, 8387. [CrossRef] [PubMed]
    [Google Scholar]
  23. Koch H., Schmid-Hempel P. ( 2011 ). Bacterial communities in central European bumblebees: low diversity and high specificity. . Microb Ecol 62, 121133. [CrossRef] [PubMed]
    [Google Scholar]
  24. Koch H., Schmid-Hempel P. ( 2012 ). Gut microbiota instead of host genotype drive the specificity in the interaction of a natural host-parasite system. . Ecol Lett 15, 10951103. [CrossRef] [PubMed]
    [Google Scholar]
  25. Liang Z. Q., Srinivasan S., Kim Y. J., Kim H. B., Wang H. T., Yang D. C. ( 2011 ). Lactobacillus kimchicus sp. nov., a β-glucosidase-producing bacterium isolated from kimchi. . Int J Syst Evol Microbiol 61, 894897. [CrossRef] [PubMed]
    [Google Scholar]
  26. Liu J.-K., Jurtshuk P. Jr ( 1986 ). N,N,N′,N′-Tetramethyl-p-phenylenediamine-dependent cytochrome oxidase analyses of Bacillus species. . Int J Syst Bacteriol 36, 3846. [CrossRef]
    [Google Scholar]
  27. Martinson V. G., Moy J., Moran N. A. ( 2012 ). Establishment of characteristic gut bacteria during development of the honeybee worker. . Appl Environ Microbiol 78, 28302840. [CrossRef] [PubMed]
    [Google Scholar]
  28. Mattila H. R., Rios D., Walker-Sperling V. E., Roeselers G., Newton I. L. ( 2012 ). Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. . PLoS ONE 7, e32962. [CrossRef] [PubMed]
    [Google Scholar]
  29. Miller L. T. ( 1982 ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16, 584586.[PubMed]
    [Google Scholar]
  30. Mohr K. I., Tebbe C. C. ( 2006 ). Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. . Environ Microbiol 8, 258272. [CrossRef] [PubMed]
    [Google Scholar]
  31. Naser S. M., Thompson F. L., Hoste B., Gevers D., Dawyndt P., Vancanneyt M., Swings J. ( 2005 ). Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. . Microbiology 151, 21412150. [CrossRef] [PubMed]
    [Google Scholar]
  32. Naser S. M., Dawyndt P., Hoste B., Gevers D., Vandemeulebroecke K., Cleenwerck I., Vancanneyt M., Swings J. ( 2007 ). Identification of lactobacilli by pheS and rpoA gene sequence analyses. . Int J Syst Evol Microbiol 57, 27772789. [CrossRef] [PubMed]
    [Google Scholar]
  33. Olofsson T. C., Vásquez A. ( 2008 ). Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera . . Curr Microbiol 57, 356363. [CrossRef] [PubMed]
    [Google Scholar]
  34. Pedersen C., Jonsson H., Lindberg J. E., Roos S. ( 2004 ). Microbiological characterization of wet wheat distillers’ grain, with focus on isolation of lactobacilli with potential as probiotics. . Appl Environ Microbiol 70, 15221527. [CrossRef] [PubMed]
    [Google Scholar]
  35. Scardovi V. ( 1986 ). Genus Bifidobacterium . . In Bergey’s Manual of Systematic Bacteriology, vol. 2, pp. 14181434. Edited by Sneath P. H. A., Mair N. S., Sharp M. E., Holt J. G. . Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  36. Schumann P. ( 2011 ). Peptidoglycan structure. . Methods Microbiol 38, 101129. [CrossRef]
    [Google Scholar]
  37. Stackebrandt E., Ebers J. ( 2006 ). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33, 152155.
    [Google Scholar]
  38. Tajabadi N., Mardan M., Abdul Manap M. Y., Shuhaimi M., Meimandipour A., Nateghi L. ( 2011 ). Detection and identification of Lactobacillus bacteria found in the honey stomach of the giant honeybee Apis dorsata . . Apidologie (Celle) 42, 642649. [CrossRef]
    [Google Scholar]
  39. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [CrossRef] [PubMed]
    [Google Scholar]
  40. Tang X., Freitak D., Vogel H., Ping L., Shao Y., Cordero E. A., Andersen G., Westermann M., Heckel D. G., Boland W. ( 2012 ). Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. . PLoS ONE 7, e36978. [CrossRef] [PubMed]
    [Google Scholar]
  41. Vásquez A., Forsgren E., Fries I., Paxton R. J., Flaberg E., Szekely L., Olofsson T. C. ( 2012 ). Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. . PLoS ONE 7, e33188. [CrossRef] [PubMed]
    [Google Scholar]
  42. Ventura M., Canchaya C., Meylan V., Klaenhammer T. R., Zink R. ( 2003 ). Analysis, characterization, and loci of the tuf genes in Lactobacillus and Bifidobacterium species and their direct application for species identification. . Appl Environ Microbiol 69, 69086922. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.063602-0
Loading
/content/journal/ijsem/10.1099/ijs.0.063602-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error