1887

Abstract

Three bacterial strains belonging to the genus were isolated from the digestive tracts of laboratory-reared bumblebee queens () using MRS agar under anaerobic conditions. The isolates were identified according to 16S rRNA gene sequence analysis as undescribed members of the genus , with the highest 16S rRNA gene sequence similarity (96.9 %) to the uncharacterized bacterial strain sp. Mboho2r2 isolated from the stomach of a European honeybee (). was found to be the closest related species with a validly published name, with 92.9 % 16S rRNA gene sequence similarity to the type strain. However, phylogenetic analyses based on different markers revealed that this species is phylogenetically very distant from the novel strains. The DNA G+C content of the proposed type strain BTLCH M1/2 is 37.8 mol%. The fatty acids Cω6 and/or C cyclo ω10/19ω6, Cω9 and C were predominant in all strains. Diphosphatidylglycerol, phosphatidylglycerol, a phospholipid, seven glycolipids and two phosphoglycolipids were detected in the novel strains. Growth was observed at 47 °C. The peptidoglycan type A4α -Lys–-Asp was determined for strain BTLCH M1/2. Genotypic characteristics and phylogenetic analyses based on the phylogenetic markers , , and as well as phenotypic characteristics and the results of chemotaxonomic analyses confirmed that the new isolates belong to a novel species of the genus , for which the name sp. nov. is proposed. The type strain is BTLCH M1/2 ( = DSM 26517 = CCM 8440).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.063602-0
2014-08-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/8/2611.html?itemId=/content/journal/ijsem/10.1099/ijs.0.063602-0&mimeType=html&fmt=ahah

References

  1. Arbogast L. Y., Henderson T. O.. ( 1975;). Effect of inhibition of protein synthesis on lipid metabolism in Lactobacillus plantarum. . J Bacteriol 123:, 962–971.[PubMed]
    [Google Scholar]
  2. Castresana J.. ( 2000;). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. . Mol Biol Evol 17:, 540–552. [CrossRef][PubMed]
    [Google Scholar]
  3. Chenoll E., Carmen Macián M., Aznar R.. ( 2006;). Lactobacillus tucceti sp. nov., a new lactic acid bacterium isolated from sausage. . Syst Appl Microbiol 29:, 389–395. [CrossRef][PubMed]
    [Google Scholar]
  4. Colman D. R., Toolson E. C., Takacs-Vesbach C. D.. ( 2012;). Do diet and taxonomy influence insect gut bacterial communities?. Mol Ecol 21:, 5124–5137. [CrossRef][PubMed]
    [Google Scholar]
  5. Dobson C. M., Deneer H., Lee S., Hemmingsen S., Glaze S., Ziola B.. ( 2002;). Phylogenetic analysis of the genus Pediococcus, including Pediococcus claussenii sp. nov., a novel lactic acid bacterium isolated from beer. . Int J Syst Evol Microbiol 52:, 2003–2010. [CrossRef][PubMed]
    [Google Scholar]
  6. Ehrmann M. A., Müller M. R., Vogel R. F.. ( 2003;). Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov.. Int J Syst Evol Microbiol 53:, 7–13. [CrossRef][PubMed]
    [Google Scholar]
  7. Engel P., Martinson V. G., Moran N. A.. ( 2012;). Functional diversity within the simple gut microbiota of the honey bee. . Proc Natl Acad Sci U S A 109:, 11002–11007. [CrossRef][PubMed]
    [Google Scholar]
  8. Evans J. D., Armstrong T. N.. ( 2006;). Antagonistic interactions between honey bee bacterial symbionts and implications for disease. . BMC Ecol 6:, 4. [CrossRef][PubMed]
    [Google Scholar]
  9. Forsgren E., Olofsson T., Vásquez A., Fries I.. ( 2010;). Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. . Apidologie (Celle) 41:, 99–108. [CrossRef]
    [Google Scholar]
  10. Goh S. H., Facklam R. R., Chang M., Hill J. E., Tyrrell G. J., Burns E. C., Chan D., He C., Rahim T.. & other authors ( 2000;). Identification of Enterococcus species and phenotypically similar Lactococcus and Vagococcus species by reverse checkerboard hybridization to chaperonin 60 gene sequences. . J Clin Microbiol 38:, 3953–3959.[PubMed]
    [Google Scholar]
  11. Gomez Zavaglia A., Disalvo E. A., De Antoni G. L.. ( 2000;). Fatty acid composition and freeze-thaw resistance in lactobacilli. . J Dairy Res 67:, 241–247. [CrossRef][PubMed]
    [Google Scholar]
  12. Hammes W. P., Hertel Ch.. ( 2009;). Genus Lactobacillus. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 3, pp. 465–511. Edited by De Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  13. Jeon Y. S., Chung H., Park S., Hur I., Lee J. H., Chun J.. ( 2005;). jPHYDIT: a java-based integrated environment for molecular phylogeny of ribosomal RNA sequences. . Bioinformatics 21:, 3171–3173. [CrossRef][PubMed]
    [Google Scholar]
  14. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  15. Killer J., Kopecný J., Mrázek J., Rada V., Benada O., Koppová I., Havlík J., Straka J.. ( 2009;). Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. . Int J Syst Evol Microbiol 59:, 2020–2024. [CrossRef][PubMed]
    [Google Scholar]
  16. Killer J., Kopečný J., Mrázek J., Havlík J., Koppová I., Benada O., Rada V., Kofroňová O.. ( 2010a;). Bombiscardovia coagulans gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of bumblebees. . Syst Appl Microbiol 33:, 359–366. [CrossRef][PubMed]
    [Google Scholar]
  17. Killer J., Kopecný J., Mrázek J., Rada V., Dubná S., Marounek M.. ( 2010b;). Bifidobacteria in the digestive tract of bumblebees. . Anaerobe 16:, 165–170. [CrossRef][PubMed]
    [Google Scholar]
  18. Killer J., Kopečný J., Mrázek J., Koppová I., Havlík J., Benada O., Kott T.. ( 2011;). Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. . Int J Syst Evol Microbiol 61:, 1315–1321. [CrossRef][PubMed]
    [Google Scholar]
  19. Killer J., Mrázek J., Bunešová V., Havlík J., Koppová I., Benada O., Rada V., Kopečný J., Vlková E.. ( 2013;). Pseudoscardovia suis gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of wild pigs (Sus scrofa). . Syst Appl Microbiol 36:, 11–16. [CrossRef][PubMed]
    [Google Scholar]
  20. Killer J., Dubná S., Sedláček I., Švec P.. ( 2014a;). Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. . Int J Syst Evol Microbiol 64:, 152–157. [CrossRef][PubMed]
    [Google Scholar]
  21. Killer J., Havlík J., Vlková E., Rada V., Pechar R., Benada O., Kopečny J., Kofroňova O., Sechovcová H.. ( 2014b;). Lactobacillus rodentium sp. nov., from the digestive tract of wild rodents. . Int J Syst Evol Microbiol 64:, 1526–1533. [CrossRef][PubMed]
    [Google Scholar]
  22. Kim H. J., Eom S. J., Park S. J., Cha C. J., Kim G. B.. ( 2011;). Lactobacillus alvi sp. nov., isolated from the intestinal tract of chicken. . FEMS Microbiol Lett 323:, 83–87. [CrossRef][PubMed]
    [Google Scholar]
  23. Koch H., Schmid-Hempel P.. ( 2011;). Bacterial communities in central European bumblebees: low diversity and high specificity. . Microb Ecol 62:, 121–133. [CrossRef][PubMed]
    [Google Scholar]
  24. Koch H., Schmid-Hempel P.. ( 2012;). Gut microbiota instead of host genotype drive the specificity in the interaction of a natural host-parasite system. . Ecol Lett 15:, 1095–1103. [CrossRef][PubMed]
    [Google Scholar]
  25. Liang Z. Q., Srinivasan S., Kim Y. J., Kim H. B., Wang H. T., Yang D. C.. ( 2011;). Lactobacillus kimchicus sp. nov., a β-glucosidase-producing bacterium isolated from kimchi. . Int J Syst Evol Microbiol 61:, 894–897. [CrossRef][PubMed]
    [Google Scholar]
  26. Liu J.-K., Jurtshuk P. Jr. ( 1986;). N,N,N′,N′-Tetramethyl-p-phenylenediamine-dependent cytochrome oxidase analyses of Bacillus species. . Int J Syst Bacteriol 36:, 38–46. [CrossRef]
    [Google Scholar]
  27. Martinson V. G., Moy J., Moran N. A.. ( 2012;). Establishment of characteristic gut bacteria during development of the honeybee worker. . Appl Environ Microbiol 78:, 2830–2840. [CrossRef][PubMed]
    [Google Scholar]
  28. Mattila H. R., Rios D., Walker-Sperling V. E., Roeselers G., Newton I. L.. ( 2012;). Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. . PLoS ONE 7:, e32962. [CrossRef][PubMed]
    [Google Scholar]
  29. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  30. Mohr K. I., Tebbe C. C.. ( 2006;). Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. . Environ Microbiol 8:, 258–272. [CrossRef][PubMed]
    [Google Scholar]
  31. Naser S. M., Thompson F. L., Hoste B., Gevers D., Dawyndt P., Vancanneyt M., Swings J.. ( 2005;). Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. . Microbiology 151:, 2141–2150. [CrossRef][PubMed]
    [Google Scholar]
  32. Naser S. M., Dawyndt P., Hoste B., Gevers D., Vandemeulebroecke K., Cleenwerck I., Vancanneyt M., Swings J.. ( 2007;). Identification of lactobacilli by pheS and rpoA gene sequence analyses. . Int J Syst Evol Microbiol 57:, 2777–2789. [CrossRef][PubMed]
    [Google Scholar]
  33. Olofsson T. C., Vásquez A.. ( 2008;). Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. . Curr Microbiol 57:, 356–363. [CrossRef][PubMed]
    [Google Scholar]
  34. Pedersen C., Jonsson H., Lindberg J. E., Roos S.. ( 2004;). Microbiological characterization of wet wheat distillers’ grain, with focus on isolation of lactobacilli with potential as probiotics. . Appl Environ Microbiol 70:, 1522–1527. [CrossRef][PubMed]
    [Google Scholar]
  35. Scardovi V.. ( 1986;). Genus Bifidobacterium. . In Bergey’s Manual of Systematic Bacteriology, vol. 2, pp. 1418–1434. Edited by Sneath P. H. A., Mair N. S., Sharp M. E., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  36. Schumann P.. ( 2011;). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  37. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  38. Tajabadi N., Mardan M., Abdul Manap M. Y., Shuhaimi M., Meimandipour A., Nateghi L.. ( 2011;). Detection and identification of Lactobacillus bacteria found in the honey stomach of the giant honeybee Apis dorsata. . Apidologie (Celle) 42:, 642–649. [CrossRef]
    [Google Scholar]
  39. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  40. Tang X., Freitak D., Vogel H., Ping L., Shao Y., Cordero E. A., Andersen G., Westermann M., Heckel D. G., Boland W.. ( 2012;). Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. . PLoS ONE 7:, e36978. [CrossRef][PubMed]
    [Google Scholar]
  41. Vásquez A., Forsgren E., Fries I., Paxton R. J., Flaberg E., Szekely L., Olofsson T. C.. ( 2012;). Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. . PLoS ONE 7:, e33188. [CrossRef][PubMed]
    [Google Scholar]
  42. Ventura M., Canchaya C., Meylan V., Klaenhammer T. R., Zink R.. ( 2003;). Analysis, characterization, and loci of the tuf genes in Lactobacillus and Bifidobacterium species and their direct application for species identification. . Appl Environ Microbiol 69:, 6908–6922. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.063602-0
Loading
/content/journal/ijsem/10.1099/ijs.0.063602-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error