1887

Abstract

A bacterial strain, OHA11, was isolated during the course of a study of phosphate-solubilizing bacteria occurring in a forest soil from Salamanca, Spain. The 16S rRNA gene sequence of strain OHA11 shared 99.1 % similarity with respect to a390, and 98.9 % similarity with the type strains of , , , and . The analysis of housekeeping genes , and confirmed its phylogenetic affiliation to the genus and showed similarities lower than 95 % in almost all cases with respect to the above species. Cells possessed two polar flagella. The respiratory quinone was Q9. The major fatty acids were C, Cω7 and summed feature 3 (Cω7/iso-C 2-OH). The strain was oxidase-, catalase- and urease-positive, positive for arginine dihydrolase but negative for nitrate reduction, β-galactosidase production and aesculin hydrolysis. It was able to grow at 31 °C and at pH 11. The DNA G+C content was 58.1 mol%. DNA–DNA hybridization results showed values lower than 49 % relatedness with respect to the type strains of the seven closest related species. Therefore, the combined genotypic, phenotypic and chemotaxonomic data support the classification of strain OHA11 to a novel species of the genus , for which the name sp. nov. is proposed. The type strain is OHA11 ( = LMG 28168 = CECT 8548).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.063560-0
2014-07-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/7/2338.html?itemId=/content/journal/ijsem/10.1099/ijs.0.063560-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef][PubMed]
    [Google Scholar]
  2. Antoun H., Beauchamp C. J., Goussard N., Chabot R., Lalande R.. ( 1998;). Potential of Rhizobium and Bradyrhizobium species as growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). . Plant Soil 204:, 57–67. [CrossRef]
    [Google Scholar]
  3. Cámara B., Strömpl C., Verbarg S., Spröer C., Pieper D. H., Tindall B. J.. ( 2007;). Pseudomonas reinekei sp. nov., Pseudomonas moorei sp. nov. and Pseudomonas mohnii sp. nov., novel species capable of degrading chlorosalicylates or isopimaric acid. . Int J Syst Evol Microbiol 57:, 923–931. [CrossRef][PubMed]
    [Google Scholar]
  4. Chun J., Goodfellow M.. ( 1995;). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. . Int J Syst Bacteriol 45:, 240–245. [CrossRef][PubMed]
    [Google Scholar]
  5. Clark L. L., Dajcs J. J., McLean C. H., Bartell J. G., Stroman D. W.. ( 2006;). Pseudomonas otitidis sp. nov., isolated from patients with otic infections. . Int J Syst Evol Microbiol 56:, 709–714. [CrossRef][PubMed]
    [Google Scholar]
  6. Doetsch R. N.. ( 1981;). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 21–33. Edited by Gerdhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  8. Hildebrand D. C., Palleroni N. J., Hendson M., Toth J., Johnson J. L.. ( 1994;). Pseudomonas flavescens sp. nov., isolated from walnut blight cankers. . Int J Syst Bacteriol 44:, 410–415. [CrossRef][PubMed]
    [Google Scholar]
  9. Kaur G., Reddy M. S.. ( 2013;). Phosphate solubilizing rhizobacteria from an organic farm and their influence on the growth and yield of maize (Zea mays L.). . J Gen Appl Microbiol 59:, 295–303. [CrossRef][PubMed]
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  11. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  12. King E. O., Ward M. K., Raney D. E.. ( 1954;). Two simple media for the demonstration of pyocyanin and fluorescin. . J Lab Clin Med 44:, 301–307.[PubMed]
    [Google Scholar]
  13. Kwon S. W., Kim J. S., Park I. C., Yoon S. H., Park D. H., Lim C. K., Go S. J.. ( 2003;). Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., novel species from farm soils in Korea. . Int J Syst Evol Microbiol 53:, 21–27. [CrossRef][PubMed]
    [Google Scholar]
  14. López J. R., Diéguez A. L., Doce A., De la Roca E., De la Herran R., Navas J. I., Toranzo A. E., Romalde J. L.. ( 2012;). Pseudomonas baetica sp. nov., a fish pathogen isolated from wedge sole, Dicologlossa cuneata (Moreau). . Int J Syst Evol Microbiol 62:, 874–882. [CrossRef][PubMed]
    [Google Scholar]
  15. Mandel M., Marmur J.. ( 1968;). Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. . Methods Enzymol 12B:, 195–206. [CrossRef]
    [Google Scholar]
  16. Mulet M., Bennasar A., Lalucat J., García-Valdés E.. ( 2009;). An rpoD-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples. . Mol Cell Probes 23:, 140–147. [CrossRef][PubMed]
    [Google Scholar]
  17. Mulet M., Lalucat J., García-Valdés E.. ( 2010;). DNA sequence-based analysis of the Pseudomonas species. . Environ Microbiol 12:, 1513–1530.[PubMed]
    [Google Scholar]
  18. Mulet M., Gomila M., Lemaitre B., Lalucat J., García-Valdés E.. ( 2012;). Taxonomic characterisation of Pseudomonas strain L48 and formal proposal of Pseudomonas entomophila sp. nov.. Syst Appl Microbiol 35:, 145–149. [CrossRef][PubMed]
    [Google Scholar]
  19. Palleroni N. J.. ( 2005;). Genus I. Pseudomonas Migula 1894, 237AL (Nom. Cons., Opin. 5 of the Jud. Comm. 1952, 121). . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2, part B, pp. 323–379. Edited by Boone D. R., Brenner D. J., Castenholz R. W., Garrity G. M. , Krieg N. R., Staley J. T... New York:: Springer;.
    [Google Scholar]
  20. Peix A., Mateos P. F., Rodríguez-Barrueco C., Martínez-Molina E., Velázquez E.. ( 2001;). Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. . Soil Biol Biochem 33:, 1927–1935. [CrossRef]
    [Google Scholar]
  21. Peix A., Rivas R., Mateos P. F., Martínez-Molina E., Rodríguez-Barrueco C., Velázquez E.. ( 2003;). Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro. . Int J Syst Evol Microbiol 53:, 2067–2072. [CrossRef][PubMed]
    [Google Scholar]
  22. Peix A., Rivas R., Santa-Regina I., Mateos P. F., Martínez-Molina E., Rodríguez-Barrueco C., Velázquez E.. ( 2004;). Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. . Int J Syst Evol Microbiol 54:, 847–850. [CrossRef][PubMed]
    [Google Scholar]
  23. Peix A., Berge O., Rivas R., Abril A., Velázquez E.. ( 2005;). Pseudomonas argentinensis sp. nov., a novel yellow pigment-producing bacterial species, isolated from rhizospheric soil in Cordoba, Argentina. . Int J Syst Evol Microbiol 55:, 1107–1112. [CrossRef][PubMed]
    [Google Scholar]
  24. Ramos E., Ramírez-Bahena M. H., Valverde A., Velázquez E., Zúñiga D., Velezmoro C., Peix A.. ( 2013;). Pseudomonas punonensis sp. nov., isolated from straw. . Int J Syst Evol Microbiol 63:, 1834–1839. [CrossRef][PubMed]
    [Google Scholar]
  25. Rivas R., García-Fraile P., Mateos P. F., Martínez-Molina E., Velázquez E.. ( 2007;). Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera. . Lett Appl Microbiol 44:, 181–187. [CrossRef][PubMed]
    [Google Scholar]
  26. Rodríguez H., Fraga R.. ( 1999;). Phosphate solubilizing bacteria and their role in plant growth promotion. . Biotechnol Adv 17:, 319–339. [CrossRef][PubMed]
    [Google Scholar]
  27. Rogers J. S., Swofford D. L.. ( 1998;). A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. . Syst Biol 47:, 77–89. [CrossRef][PubMed]
    [Google Scholar]
  28. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  29. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  30. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  31. Tayeb A. L., Ageron E., Grimont F., Grimont P. A. D.. ( 2005;). Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. . Res Microbiol 156:, 763–773. [CrossRef][PubMed]
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  33. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  34. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  35. Toro M., Ramírez-Bahena M. H., Cuesta M. J., Velázquez E., Peix A.. ( 2013;). Pseudomonas guariconensis sp. nov., isolated from rhizospheric soil. . Int J Syst Evol Microbiol 63:, 4413–4420. [CrossRef][PubMed]
    [Google Scholar]
  36. Verhille S., Baida N., Dabboussi F., Izard D., Leclerc H.. ( 1999;). Taxonomic study of bacteria isolated from natural mineral waters: proposal of Pseudomonas jessenii sp. nov. and Pseudomonas mandelii sp. nov.. Syst Appl Microbiol 22:, 45–58. [CrossRef][PubMed]
    [Google Scholar]
  37. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  38. Willems A., Doignon-Bourcier F., Goris J., Coopman R., de Lajudie P., De Vos P., Gillis M.. ( 2001;). DNA-DNA hybridization study of Bradyrhizobium strains. . Int J Syst Evol Microbiol 51:, 1315–1322.[PubMed]
    [Google Scholar]
  39. Xiao Y. P., Hui W., Wang Q., Roh S. W., Shi X. Q., Shi J. H., Quan Z. X.. ( 2009;). Pseudomonas caeni sp. nov., a denitrifying bacterium isolated from the sludge of an anaerobic ammonium-oxidizing bioreactor. . Int J Syst Evol Microbiol 59:, 2594–2598. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.063560-0
Loading
/content/journal/ijsem/10.1099/ijs.0.063560-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error