1887

Abstract

Two novel bacterial strains, SLG210-30A1 and SLG210-19A2, which shared 99.9 % 16S rRNA gene sequence similarity with each other, were isolated from petroleum-contaminated saline soil in Shengli Oilfield, eastern China. Cells were Gram-stain-negative, motile, aerobic, mesophilic and moderately halophilic. They could grow chemoheterotrophically with oxygen as an electron acceptor. Morphologically, cells were typical Caulobacteria-type dimorphic prosthecate bacteria. The genomic DNA G+C contents of strains SLG210-30A1 and SLG210-19A2 were 61.8 mol% and 61.6 mol% respectively. Strain SLG210-30A1 had Q10 as the predominant respiratory ubiquinone, and C (28.4 %), C (11.6 %), C (22.1 %) and Cω7 (14.0 %) as the major cellular fatty acids. The polar lipids of the two isolates were some glycolipids, a lipid, a phospholipid, an aminoglycolipid and an aminophospholipid (all unidentified). The 16S rRNA gene sequences of strains SLG210-30A1 and SLG210-19A2 showed the highest similarities with MCS 33 (99.8–99.9 %), but low sequence similarities (<94.7 %) with type strains of other members of the family . However, the DNA–DNA relatedness of MCS 33 to strains SLG210-30A1 and SLG210-19A2 was 37.4±4.4 % and 36.1±1.1 %, respectively. Based on different physiological, biochemical, and phylogenetic characteristics, strains SLG210-30A1 and SLG210-19A2 represent a novel species of the genus . The name is therefore proposed with strain SLG210-30A1 ( = LMG 27741 = CGMCC 1.12766) as the type strain. An emended description of the genus is also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.063537-0
2014-09-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/9/3181.html?itemId=/content/journal/ijsem/10.1099/ijs.0.063537-0&mimeType=html&fmt=ahah

References

  1. Abraham W. R., Strömpl C., Meyer H., Lindholst S., Moore E. R., Christ R., Vancanneyt M., Tindall B. J., Bennasar A.. & other authors ( 1999;). Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. . Int J Syst Bacteriol 49:, 1053–1073. [CrossRef][PubMed]
    [Google Scholar]
  2. Abraham W. R., Strömpl C., Vancanneyt M., Bennasar A., Swings J., Lünsdorf H., Smit J., Moore E. R. B.. ( 2004;). Woodsholea maritima gen. nov., sp. nov., a marine bacterium with a low diversity of polar lipids. . Int J Syst Evol Microbiol 54:, 1227–1234. [CrossRef][PubMed]
    [Google Scholar]
  3. Abraham W. R., Lünsdorf H., Vancanneyt M., Smit J.. ( 2013;). Cauliform bacteria lacking phospholipids from an abyssal hydrothermal vent: proposal of Glycocaulis abyssi gen. nov., sp. nov., belonging to the family Hyphomonadaceae. . Int J Syst Evol Microbiol 63:, 2207–2215. [CrossRef][PubMed]
    [Google Scholar]
  4. Andrews J. M..for the BSAC Working Party on Susceptibility Testing ( 2008;). BSAC standardized disc susceptibility testing method (version 7). . J Antimicrob Chemother 62:, 256–278. [CrossRef][PubMed]
    [Google Scholar]
  5. Cai M., Wang L., Cai H., Li Y., Wang Y. N., Tang Y. Q., Wu X. L.. ( 2011;). Salinarimonas ramus sp. nov. and Tessaracoccus oleiagri sp. nov., isolated from a crude oil-contaminated saline soil. . Int J Syst Evol Microbiol 61:, 1767–1775. [CrossRef][PubMed]
    [Google Scholar]
  6. Chen M. H., Sheu S. Y., Chen C. A., Wang J. T., Chen W. M.. ( 2012;). Oceanicaulis stylophorae sp. nov., isolated from the reef-building coral Stylophora pistillata. . Int J Syst Evol Microbiol 62:, 2241–2246. [CrossRef][PubMed]
    [Google Scholar]
  7. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef][PubMed]
    [Google Scholar]
  8. Collins M. D., Goodfellow M., Minnikin D. E.. ( 1980;). Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. . J Gen Microbiol 118:, 29–37.[PubMed]
    [Google Scholar]
  9. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  10. Embley T. M.. ( 1991;). The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. . Lett Appl Microbiol 13:, 171–174. [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  12. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  13. Henrici A. T., Johnson D.. ( 1935;). Stalked bacteria, a new order of Schizomycetes. . J Bacteriol 29:, 3–4.
    [Google Scholar]
  14. Imhoff J. F., Caumette P.. ( 2004;). Recommended standards for the description of new species of anoxygenic phototrophic bacteria. . Int J Syst Evol Microbiol 54:, 1415–1421. [CrossRef][PubMed]
    [Google Scholar]
  15. Kates M.. ( 1972;). Techniques of Lipidology: Isolation, Analysis and Identification of Lipids, pp. 393–469. New York:: Elsevier;. [CrossRef]
    [Google Scholar]
  16. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  17. Lányí B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  18. Lee S. D.. ( 2007;). Devosia subaequoris sp. nov., isolated from beach sediment. . Int J Syst Evol Microbiol 57:, 2212–2215. [CrossRef][PubMed]
    [Google Scholar]
  19. Lee K. B., Liu C. T., Anzai Y., Kim H., Aono T., Oyaizu H.. ( 2005;). The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov.. Int J Syst Evol Microbiol 55:, 1907–1919. [CrossRef][PubMed]
    [Google Scholar]
  20. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  21. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  22. Moore R. L., Weiner R. M., Gebers R.. ( 1984;). Genus Hyphomonas Pongratz 1957 nom. rev. emend., Hyphomonas polymorpha Pongratz 1957 nom. rev. emend., and Hyphomonas neptunium (Leifson 1964) comb. nov. emend. (Hyphomicrobium neptunium). . Int J Syst Bacteriol 34:, 71–73. [CrossRef]
    [Google Scholar]
  23. Rzhetsky A., Nei M.. ( 1993;). Theoretical foundation of the minimum-evolution method of phylogenetic inference. . Mol Biol Evol 10:, 1073–1095.[PubMed]
    [Google Scholar]
  24. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  25. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  26. Strömpl C., Hold G. L., Lünsdorf H., Graham J., Gallacher S., Abraham W. R., Moore E. R. B., Timmis K. N.. ( 2003;). Oceanicaulis alexandrii gen. nov., sp. nov., a novel stalked bacterium isolated from a culture of the dinoflagellate Alexandrium tamarense (Lebour) Balech. . Int J Syst Evol Microbiol 53:, 1901–1906. [CrossRef][PubMed]
    [Google Scholar]
  27. Sun J. Q., Xu L., Zhang Z., Li Y., Tang Y. Q., Wu X. L.. ( 2014;). Diverse bacteria isolated from microtherm oil-production water. . Antonie van Leeuwenhoek 105:, 401–411. [CrossRef][PubMed]
    [Google Scholar]
  28. Takai K., Inoue A., Horikoshi K.. ( 2002;). Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. . Int J Syst Evol Microbiol 52:, 1089–1095. [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  30. Tang Y. Q., Li Y., Zhao J. Y., Chi C. Q., Huang L. X., Dong H. P., Wu X. L.. ( 2012;). Microbial communities in long-term, water-flooded petroleum reservoirs with different in situ temperatures in the Huabei Oilfield, China. . PLoS ONE 7:, e33535. [CrossRef][PubMed]
    [Google Scholar]
  31. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  32. Wang L. T., Lee F. L., Tai C. J., Kasai H.. ( 2007;). Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. . Int J Syst Evol Microbiol 57:, 1846–1850. [CrossRef][PubMed]
    [Google Scholar]
  33. Wang Y. N., Chi C. Q., Cai M., Lou Z. Y., Tang Y. Q., Zhi X. Y., Li W. J., Wu X. L., Du X.. ( 2010;). Amycolicicoccus subflavus gen. nov., sp. nov., an actinomycete isolated from a saline soil contaminated by crude oil. . Int J Syst Evol Microbiol 60:, 638–643. [CrossRef][PubMed]
    [Google Scholar]
  34. Weiner R. M., Melick M., O’Neill K., Quintero E.. ( 2000;). Hyphomonas adhaerens sp. nov., Hyphomonas johnsonii sp. nov. and Hyphomonas rosenbergii sp. nov., marine budding and prosthecate bacteria. . Int J Syst Evol Microbiol 50:, 459–469. [CrossRef][PubMed]
    [Google Scholar]
  35. Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J.. ( 1983;). Numerical classification of Streptomyces and related genera. . J Gen Microbiol 129:, 1743–1813.[PubMed]
    [Google Scholar]
  36. Wu X. L., Yu S. L., Gu J., Zhao G. F., Chi C. Q.. ( 2009;). Filomicrobium insigne sp. nov., isolated from an oil-polluted saline soil. . Int J Syst Evol Microbiol 59:, 300–305. [CrossRef][PubMed]
    [Google Scholar]
  37. Yamamoto S., Harayama S.. ( 1995;). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. . Appl Environ Microbiol 61:, 1104–1109.[PubMed]
    [Google Scholar]
  38. Yamamoto S., Bouvet P. J., Harayama S.. ( 1999;). Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA-DNA hybridization. . Int J Syst Bacteriol 49:, 87–95. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.063537-0
Loading
/content/journal/ijsem/10.1099/ijs.0.063537-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error