1887

Abstract

An aerobic, methane-oxidizing bacterium (strain S8) was isolated from marine sediments in Kagoshima Bay, Japan. Phylogenetic analysis based on 16S rRNA gene sequences indicated that this strain is closely related to members of the genus (97.6–97.9 % similarity) within the class . Strain S8 was a Gram-staining-negative, non-motile, coccoid or short rod-shaped organism. The temperature range for growth of strain S8 was 20–47 °C (optimum growth at 36 °C). It required NaCl (>0.5 %), tolerated up to 5 % NaCl and utilized methane and methanol. The major cellular fatty acid and major respiratory quinone were C and 18-methylene ubiquinone 8, respectively. The DNA G+C content was 59.7 mol%. Strain S8 possessed , which encodes soluble methane monooxygenase, as well as , which encodes the particulate methane monooxygenase. On the basis of this morphological, physiological, biochemical and genetic information, the first marine species in the genus is proposed, with the name sp. nov. The type strain is S8 ( = NBRC 109686 = DSM 27392). An emended description of the genus is also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.063503-0
2014-09-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/9/3240.html?itemId=/content/journal/ijsem/10.1099/ijs.0.063503-0&mimeType=html&fmt=ahah

References

  1. Baxter N. J. , Hirt R. P. , Bodrossy L. , Kovacs K. L. , Embley T. M. , Prosser J. I. , Murrell J. C. . ( 2002; ). The ribulose-1,5-bisphosphate carboxylase/oxygenase gene cluster of Methylococcus capsulatus (Bath). . Arch Microbiol 177:, 279–289. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bodrossy L. , Holmes E. M. , Holmes A. J. , Kovács K. L. , Murrell J. C. . ( 1997; ). Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov.. Arch Microbiol 168:, 493–503. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bowman J. P. . ( 2006; ). The methanotrophs – the families Methylococcaceae and Methylocystaceae . . In The Prokaryotes, , 3rd edn., vol. 5, pp. 266–289. Edited by Dworkin M. , Falkow S. , Rosenberg E. , Schleifer K.-H. , Stackebrandt E. . . New York:: Springer;. [CrossRef]
    [Google Scholar]
  4. Bowman J. P. , Skerratt J. H. , Nichols P. D. , Sly L. I. . ( 1991; ). Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria. . FEMS Microbiol Ecol 85:, 15–22. [CrossRef]
    [Google Scholar]
  5. Bowman J. P. , Sly L. I. , Stackebrandt E. . ( 1995; ). The phylogenetic position of the family Methylococcaceae . . Int J Syst Bacteriol 45:, 182–185. [CrossRef] [PubMed]
    [Google Scholar]
  6. Craig H. , Horibe Y. . ( 1994; ). 3He and methane in Sakurajima Caldera, Kagoshima Bay, Japan. . Earth Planet Sci Lett 123:, 221–226. [CrossRef]
    [Google Scholar]
  7. Eshinimaev B. Ts. , Medvedkova K. A. , Khmelenina V. N. , Suzina N. E. , Osipov G. A. , Lysenko A. M. , Trotsenko Iu. A. . ( 2004; ). [New thermophilic methanotrophs of the genus Methylocaldum]. . Mikrobiologiia 73:, 530–539 (in Russian). [CrossRef] [PubMed]
    [Google Scholar]
  8. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  9. Fuse H. , Ohta M. , Takimura O. , Murakami K. , Inoue H. , Yamaoka Y. , Oclarit J. M. , Omori T. . ( 1998; ). Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. . Biosci Biotechnol Biochem 62:, 1925–1931. [CrossRef] [PubMed]
    [Google Scholar]
  10. Grossart H. P. , Frindte K. , Dziallas C. , Eckert W. , Tang K. W. . ( 2011; ). Microbial methane production in oxygenated water column of an oligotrophic lake. . Proc Natl Acad Sci U S A 108:, 19657–19661. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hanada S. , Takaichi S. , Matsuura K. , Nakamura K. . ( 2002; ). Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. . Int J Syst Evol Microbiol 52:, 187–193.[PubMed] [CrossRef]
    [Google Scholar]
  12. Hirayama H. , Fuse H. , Abe M. , Miyazaki M. , Nakamura T. , Nunoura T. , Furushima Y. , Yamamoto H. , Takai K. . ( 2013; ). Methylomarinum vadi gen. nov., sp. nov., a methanotroph isolated from two distinct marine environments. . Int J Syst Evol Microbiol 63:, 1073–1082. [CrossRef] [PubMed]
    [Google Scholar]
  13. Holmes A. J. , Owens N. J. P. , Murrell J. C. . ( 1995; ). Detection of novel marine methanotrophs using phylogenetic and functional gene probes after methane enrichment. . Microbiology 141:, 1947–1955. [CrossRef] [PubMed]
    [Google Scholar]
  14. Ishibashi J. , Nakaseama M. , Seguchi M. , Yamashita T. , Doi S. , Sakamoto T. , Shimada K. , Shimada N. , Noguchi T. . & other authors ( 2008; ). Marine shallow-water hydrothermal activity and mineralization at the Wakamiko Crater in Kagoshima Bay, South Kyushu, Japan. . J Volcanol Geotherm Res 173:, 84–98. [CrossRef]
    [Google Scholar]
  15. Kalyuzhnaya M. G. , Khmelenina V. , Eshinimaev B. , Sorokin D. , Fuse H. , Lidstrom M. , Trotsenko Y. . ( 2008; ). Classification of halo(alkali)philic and halo(alkali)tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium . . Int J Syst Evol Microbiol 58:, 591–596. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kamagata Y. , Mikami E. . ( 1991; ). Isolation and characterization of a novel thermophilic Methanosaeta strain. . Int J Syst Bacteriol 41:, 191–196. [CrossRef]
    [Google Scholar]
  17. Karl D. M. , Beversdorf L. , Bjorkman K. M. , Church M. J. , Martinez A. , Delong E. F. . ( 2008; ). Aerobic production of methane in the sea. . Nat Geosci 1:, 473–478. [CrossRef]
    [Google Scholar]
  18. Kester D. R. , Duedall I. W. , Connors D. N. , Pytkowicz R. M. . ( 1967; ). Preparation of artificial seawater. . Limnol Oceanogr 12:, 176–179. [CrossRef]
    [Google Scholar]
  19. Lees V. , Owens N. J. P. , Murrell J. C. . ( 1991; ). Nitrogen metabolism in marine methanotrophs. . Arch Microbiol 157:, 60–65. [CrossRef]
    [Google Scholar]
  20. Lidstrom M. E. . ( 1988; ). Isolation and characterization of marine methanotrophs. . Antonie van Leeuwenhoek 54:, 189–199. [CrossRef] [PubMed]
    [Google Scholar]
  21. Osborn A. M. , Moore E. R. , Timmis K. N. . ( 2000; ). An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. . Environ Microbiol 2:, 39–50. [CrossRef] [PubMed]
    [Google Scholar]
  22. Phrampus B. J. , Hornbach M. J. . ( 2012; ). Recent changes to the Gulf Stream causing widespread gas hydrate destabilization. . Nature 490:, 527–530. [CrossRef] [PubMed]
    [Google Scholar]
  23. Pruesse E. , Peplies J. , Glöckner F. O. . ( 2012; ). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28:, 1823–1829. [CrossRef] [PubMed]
    [Google Scholar]
  24. Reeburgh W. S. . ( 2007; ). Oceanic methane biogeochemistry. . Chem Rev 107:, 486–513. [CrossRef] [PubMed]
    [Google Scholar]
  25. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  26. Sieburth J. N. , Johnson P. W. , Eberhardt M. A. , Sieracki M. E. , Lidstrom M. , Laux D. . ( 1987; ). The first methane-oxidizing bacterium from the upper mixing layer of the deep ocean: Methylomonas pelagica sp. nov.. Curr Microbiol 14:, 285–293. [CrossRef]
    [Google Scholar]
  27. Takai K. , Nakamura K. . ( 2010; ). Compositional, physiological and metabolic variability in microbial communities associated with geochemically diverse, deep-sea hydrothermal vent fluids. . In Geomicrobiology: Molecular and Environmental Perspective, pp. 251–283. Edited by Barton L. L. , Mandl M. , Loy A. . . New York:: Springer;. [CrossRef]
    [Google Scholar]
  28. Takeuchi M. , Yoshioka H. , Seo Y. , Tanabe S. , Tamaki H. , Kamagata Y. , Takahashi H. A. , Igari S. , Mayumi D. , Sakata S. . ( 2011; ). A distinct freshwater-adapted subgroup of ANME-1 dominates active archaeal communities in terrestrial subsurfaces in Japan. . Environ Microbiol 13:, 3206–3218. [CrossRef] [PubMed]
    [Google Scholar]
  29. Takeuchi M. , Katayama T. , Yamagishi T. , Hanada S. , Tamaki H. , Kamagata Y. , Oshima K. , Hattori M. , Marumo K. . & other authors ( 2014; ). Methyloceanibacter caenitepidi gen. nov., sp. nov., a facultatively methylotrophic bacterium isolated from marine sediments near a hydrothermal vent. . Int J Syst Evol Microbiol 64:, 462–468. [CrossRef] [PubMed]
    [Google Scholar]
  30. Tamaki H. , Sekiguchi Y. , Hanada S. , Nakamura K. , Nomura N. , Matsumura M. , Kamagata Y. . ( 2005; ). Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. . Appl Environ Microbiol 71:, 2162–2169. [CrossRef] [PubMed]
    [Google Scholar]
  31. Tamaki H. , Hanada S. , Sekiguchi Y. , Tanaka Y. , Kamagata Y. . ( 2009; ). Effect of gelling agent on colony formation in solid cultivation of microbial community in lake sediment. . Environ Microbiol 11:, 1827–1834. [CrossRef] [PubMed]
    [Google Scholar]
  32. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  33. Van Dover C. L. . ( 2011; ). Tighten regulations on deep-sea mining. . Nature 470:, 31–33. [CrossRef] [PubMed]
    [Google Scholar]
  34. Weisburg W. G. , Barns S. M. , Pelletier D. A. , Lane D. J. . ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  35. Yamanaka T. , Maeto K. , Akashi H. , Ishibashi J. , Miyoshi Y. , Okamura K. , Noguchi T. , Kuwahara Y. , Toki T. . & other authors ( 2013; ). Shallow submarine hydrothermal activity with significant contribution of magmatic water producing talc chimneys in the Wakamiko Crater of Kagoshima Bay, southern Kyushu, Japan. . J Volcanol Geotherm Res 258:, 74–84. [CrossRef]
    [Google Scholar]
  36. Zhang H. , Hanada S. , Shigematsu T. , Shibuya K. , Kamagata Y. , Kanagawa T. , Kurane R. . ( 2000; ). Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. . Int J Syst Evol Microbiol 50:, 743–749. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.063503-0
Loading
/content/journal/ijsem/10.1099/ijs.0.063503-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error