1887

Abstract

A novel strain, designated strain CU3-7, was isolated from faeces of a two-week-old baby. The isolate was Gram-staining-positive, anaerobic and rod-shaped. Results from 16S rRNA gene sequence analysis revealed that strain CU3-7 was phylogenetically affiliated with members of the genus . Strain CU3-7 showed the highest level of sequence similarity with KCTC 3216 (98.4 %), followed by KCTC 3425 (97.9 %). Analysis of sequences showed that strain CU3-7 was closely related to KCTC 3216 (94.0 %) and KCTC 3425 (92.5 %). The DNA–DNA hybridization values with the closely related strains were all below the cut-off value for species delineation, 17.0 % with KCTC 3425 and 14.9 % with KCTC 3216. Fructose-6-phosphate phosphoketolase activity was detected. The predominant cellular fatty acids were C (27.7 %), Cω9 (27.4 %) and Cω9 dimethylacetate (15.5 %). The DNA G+C content was 58.6 mol%. On the basis of polyphasic taxonomy, strain CU3-7 should be classified as the type strain of a novel species within the genus , for which the name sp. nov. is proposed ( = KACC 17904 = JCM 19861).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.063479-0
2014-09-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/9/3134.html?itemId=/content/journal/ijsem/10.1099/ijs.0.063479-0&mimeType=html&fmt=ahah

References

  1. Biavati B., Mattarelli P.. ( 1991;). Bifidobacterium ruminantium sp. nov. and Bifidobacterium merycicum sp. nov. from the rumens of cattle. . Int J Syst Bacteriol 41:, 163–168. [CrossRef][PubMed]
    [Google Scholar]
  2. Biavati B., Mattarelli P.. ( 2006;). The family Bifidobacteriaceae. . In The Prokaryotes: a Handbook on the Biology of Bacteria, , 3rd edn., vol. 3, pp. 322–382. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E... New York:: Springer;. [CrossRef]
    [Google Scholar]
  3. Dong X., Xin Y., Jian W., Liu X., Ling D.. ( 2000;). Bifidobacterium thermacidophilum sp. nov., isolated from an anaerobic digester. . Int J Syst Evol Microbiol 50:, 119–125. [CrossRef][PubMed]
    [Google Scholar]
  4. Endo A., Futagawa-Endo Y., Schumann P., Pukall R., Dicks L. M. T.. ( 2012;). Bifidobacterium reuteri sp. nov., Bifidobacterium callitrichos sp. nov., Bifidobacterium saguini sp. nov., Bifidobacterium stellenboschense sp. nov. and Bifidobacterium biavatii sp. nov. isolated from faeces of common marmoset (Callithrix jacchus) and red-handed tamarin (Saguinus midas). . Syst Appl Microbiol 35:, 92–97. [CrossRef][PubMed]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Evol Microbiol 39:, 224–229.
    [Google Scholar]
  6. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  7. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  8. Hoyles L., Inganäs E., Falsen E., Drancourt M., Weiss N., McCartney A. L., Collins M. D.. ( 2002;). Bifidobacterium scardovii sp. nov., from human sources. . Int J Syst Evol Microbiol 52:, 995–999. [CrossRef][PubMed]
    [Google Scholar]
  9. ISO ( 2010;). ISO 29981/IDF 220. Milk products - enumeration of presumptive Bifidobacteria - colony counts technique at 37 degrees. . Geneva:: International Organization for Standardization;.
  10. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;. [CrossRef]
    [Google Scholar]
  11. Killer J., Kopečný J., Mrázek J., Koppová I., Havlík J., Benada O., Kott T.. ( 2011;). Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. . Int J Syst Evol Microbiol 61:, 1315–1321. [CrossRef][PubMed]
    [Google Scholar]
  12. Killer J., Sedláček I., Rada V., Havlík J., Kopečný J.. ( 2013;). Reclassification of Bifidobacterium stercoris Kim et al. 2010 as a later heterotypic synonym of Bifidobacterium adolescentis. . Int J Syst Evol Microbiol 63:, 4350–4353. [CrossRef][PubMed]
    [Google Scholar]
  13. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  14. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... New York:: Wiley;.
    [Google Scholar]
  15. Lauer E.. ( 1990;). Bifidobacterium gallicum sp. nov. isolated from human feces. . Int J Syst Bacteriol 40:, 100–102. [CrossRef][PubMed]
    [Google Scholar]
  16. Makino H., Kushiro A., Ishikawa E., Kubota H., Gawad A., Sakai T., Oishi K., Martin R., Ben-Amor K.. & other authors ( 2013;). Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant’s microbiota. . PLoS ONE 8:, e78331. [CrossRef][PubMed]
    [Google Scholar]
  17. Meile L., Ludwig W., Rueger U., Gut C., Kaufmann P., Dasen G., Wenger S., Teuber M.. ( 1997;). Bifidobacterium lactis sp. nov., a moderately oxygen tolerant species isolated from fermented milk. . Syst Appl Microbiol 20:, 57–64. [CrossRef]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  19. Morita H., Nakano A., Onoda H., Toh H., Oshima K., Takami H., Murakami M., Fukuda S., Takizawa T.. & other authors ( 2011;). Bifidobacterium kashiwanohense sp. nov., isolated from healthy infant faeces. . Int J Syst Evol Microbiol 61:, 2610–2615. [CrossRef][PubMed]
    [Google Scholar]
  20. Okamoto M., Benno Y., Leung K.-P., Maeda N.. ( 2008;). Bifidobacterium tsurumiense sp. nov., from hamster dental plaque. . Int J Syst Evol Microbiol 58:, 144–148. [CrossRef][PubMed]
    [Google Scholar]
  21. Ongol M. P., Sawatari Y., Ebina Y., Sone T., Tanaka M., Tomita F., Yokota A., Asano K.. ( 2007;). Yoghurt fermented by Lactobacillus delbrueckii subsp. bulgaricus H+-ATPase-defective mutants exhibits enhanced viability of Bifidobacterium breve during storage. . Int J Food Microbiol 116:, 358–366. [CrossRef][PubMed]
    [Google Scholar]
  22. Orban J. I., Patterson J. A.. ( 2000;). Modification of the phosphoketolase assay for rapid identification of bifidobacteria. . J Microbiol Methods 40:, 221–224. [CrossRef][PubMed]
    [Google Scholar]
  23. Orla-Jensen S.. ( 1924;). La classification des bactéries lactiques. . Lait 4:, 468–474. [CrossRef]
    [Google Scholar]
  24. Pokusaeva K., Fitzgerald G. F., van Sinderen D.. ( 2011;). Carbohydrate metabolism in Bifidobacteria. . Genes Nutr 6:, 285–306. [CrossRef][PubMed]
    [Google Scholar]
  25. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  26. Scardovi V., Trovatelli L. D.. ( 1974;). Bifidobacterium animalis (Mitsuoka) comb. nov. and the “minimum” and “subtile” groups of new bifidobacteria found in sewage. . Int J Syst Bacteriol 24:, 21–28. [CrossRef]
    [Google Scholar]
  27. Simpson P. J., Ross R. P., Fitzgerald G. F., Stanton C.. ( 2004;). Bifidobacterium psychraerophilum sp. nov. and Aeriscardovia aeriphila gen. nov., sp. nov., isolated from a porcine caecum. . Int J Syst Evol Microbiol 54:, 401–406. [CrossRef][PubMed]
    [Google Scholar]
  28. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  29. Thitaram S. N., Siragusa G. R., Hinton A. Jr. ( 2005;). Bifidobacterium-selective isolation and enumeration from chicken caeca by a modified oligosaccharide antibiotic-selective agar medium. . Lett Appl Microbiol 41:, 355–360. [CrossRef][PubMed]
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  31. Tissier M. H.. ( 1900;). Réchérches sur la flore intestinale normale et pathologique du nourrisson (thesis). . Paris:: University of Paris;.
  32. Ventura M., Canchaya C., Del Casale A., Dellaglio F., Neviani E., Fitzgerald G. F., van Sinderen D.. ( 2006;). Analysis of bifidobacterial evolution using a multilocus approach. . Int J Syst Evol Microbiol 56:, 2783–2792. [CrossRef][PubMed]
    [Google Scholar]
  33. Ventura M., Canchaya C., Tauch A., Chandra G., Fitzgerald G. F., Chater K. F., van Sinderen D.. ( 2007;). Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. . Microbiol Mol Biol Rev 71:, 495–548. [CrossRef][PubMed]
    [Google Scholar]
  34. Watanabe K., Makino H., Sasamoto M., Kudo Y., Fujimoto J., Demberel S.. ( 2009;). Bifidobacterium mongoliense sp. nov., from airag, a traditional fermented mare’s milk product from Mongolia. . Int J Syst Evol Microbiol 59:, 1535–1540. [CrossRef][PubMed]
    [Google Scholar]
  35. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  36. Zhu L., Li W., Dong X.. ( 2003;). Species identification of genus Bifidobacterium based on partial HSP60 gene sequences and proposal of Bifidobacterium thermacidophilum subsp. porcinum subsp. nov.. Int J Syst Evol Microbiol 53:, 1619–1623. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.063479-0
Loading
/content/journal/ijsem/10.1099/ijs.0.063479-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error